scholarly journals A “Wicked Problem” Reconciling Human-Shark Conflict, Shark Bite Mitigation, and Threatened Species

2021 ◽  
Vol 2 ◽  
Author(s):  
Yuri Niella ◽  
Victor M. Peddemors ◽  
Marcel Green ◽  
Amy F. Smoothey ◽  
Robert Harcourt

Conservation measures often result in a “wicked problem,” i.e., a complex problem with conflicting aims and no clear or straightforward resolution without severe adverse effects on one or more parties. Here we discuss a novel approach to an ongoing problem, in which actions to reduce risk to humans, involve lethal control of otherwise protected species. To protect water users, nets are often used to catch potentially dangerous sharks at popular bathing beaches, yet in Australian waters one of the targeted species, the white shark (Carcharodon carcharias) is listed as Vulnerable, while bycatch includes the Critically Endangered grey nurse shark (Carcharias taurus). Recent, highly publicised, shark attacks have triggered demands for improved bather protection, whilst welfare and conservation organisations have called for removal of lethal measures. This leaves management and policy makers with a wicked problem: removing nets to reduce impacts on threatened species may increase risk to humans; or leaving the program as it is on the premise that the benefits provided by bather protection are greater than the impact on threatened and protected species. We used multivariate analysis and generalised additive models to investigate the biological, spatial-temporal, and environmental patterns influencing catch rates of threatened and of potentially dangerous shark species in the New South Wales shark nets over two decades to April 2019. Factors influencing catches were used to develop a matrix of potential changes to reduce catch of threatened species. Our proposed solutions include replacing existing nets with alternative mitigation strategies at key beaches where catch rate of threatened species is high. This approach provides stakeholders with a hierarchy of scenarios that address both social demands and threatened species conservation and is broadly applicable to human-wildlife conflict scenarios elsewhere.

Author(s):  
David Fernández ◽  
Daphne Kerhoas ◽  
Andrea Dempsey ◽  
Josephine Billany ◽  
Gráinne McCabe ◽  
...  

AbstractOver the past decades, primate populations have been declining. Four years ago, >60% of species were listed as threatened. As the rate of loss accelerates and new IUCN assessments are being published, we used IUCN Red List assessments and peer-reviewed literature published within the last 5 yr to evaluate the status of primates globally, by region and by taxonomic group. We also examined the main factors affecting a species’ conservation status to determine if we could predict the status of understudied species. We found that 65% of species are in the top three IUCN Red List categories (Vulnerable, Endangered, Critically Endangered). Globally, the main threats to primates are Biological Resource Use, including Hunting & Logging, and Agriculture. The impact of these threats varied by region and taxon. Our model showed that Malagasy and Asian primates, and those affected by Agriculture, Human Disturbance, and Climate Change were more likely to be considered at risk of extinction. The model’s predictive probability, however, was low. Our literature analysis showed that some threats, especially climate change and disease, affected more species than indicated by the IUCN Red List. As we move into the next decade, we must continue tackling hunting and agricultural expansion but also be vigilant about emerging threats. We must also aim to regularly test the effectiveness of mitigation strategies, evaluating their long-term adoption and their impact on primates; as well as to increase communication between researchers and applied conservationists to ensure IUCN assessments include current and emerging threats.


Author(s):  
Brett Summerell ◽  
Edward Liew

Phytophthora root rot is one of the most devastating diseases of perennial plants worldwide, affecting plants in food production, amenity plantings and in natural ecosystems. The impact of these diseases in botanic gardens can be substantial and can affect how a site may be used for months and years ahead. Management is critically dependent on avoidance of the introduction of the pathogen and effective hygiene protocols are key to achieving this. Additionally, botanic gardens have a key role to play in protecting plants and enhancing conservation outcomes through surveillance, education and ex situ conservation programmes, as well as through the recognition that they can be critical as sentinel sites to detect new incursions of pests anddiseases. The impact of several Phytophthora species on the in situ and ex situ management of the critically endangered Wollemia nobilis (Wollemi pine), which is highly susceptible to phytophthora root rot, is used to highlight the need to ensure management of these pathogens is a critical component of threatened species recovery and management.


Author(s):  
Sergei Soldatenko ◽  
Sergei Soldatenko ◽  
Genrikh Alekseev ◽  
Genrikh Alekseev ◽  
Alexander Danilov ◽  
...  

Every aspect of human operations faces a wide range of risks, some of which can cause serious consequences. By the start of 21st century, mankind has recognized a new class of risks posed by climate change. It is obvious, that the global climate is changing, and will continue to change, in ways that affect the planning and day to day operations of businesses, government agencies and other organizations and institutions. The manifestations of climate change include but not limited to rising sea levels, increasing temperature, flooding, melting polar sea ice, adverse weather events (e.g. heatwaves, drought, and storms) and a rise in related problems (e.g. health and environmental). Assessing and managing climate risks represent one of the most challenging issues of today and for the future. The purpose of the risk modeling system discussed in this paper is to provide a framework and methodology to quantify risks caused by climate change, to facilitate estimates of the impact of climate change on various spheres of human activities and to compare eventual adaptation and risk mitigation strategies. The system integrates both physical climate system and economic models together with knowledge-based subsystem, which can help support proactive risk management. System structure and its main components are considered. Special attention is paid to climate risk assessment, management and hedging in the Arctic coastal areas.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1534
Author(s):  
Chandra Mohan Singh ◽  
Poornima Singh ◽  
Chandrakant Tiwari ◽  
Shalini Purwar ◽  
Mukul Kumar ◽  
...  

Drought stress is considered a severe threat to crop production. It adversely affects the morpho-physiological, biochemical and molecular functions of the plants, especially in short duration crops like mungbean. In the past few decades, significant progress has been made towards enhancing climate resilience in legumes through classical and next-generation breeding coupled with omics approaches. Various defence mechanisms have been reported as key players in crop adaptation to drought stress. Many researchers have identified potential donors, QTLs/genes and candidate genes associated to drought tolerance-related traits. However, cloning and exploitation of these loci/gene(s) in breeding programmes are still limited. To bridge the gap between theoretical research and practical breeding, we need to reveal the omics-assisted genetic variations associated with drought tolerance in mungbean to tackle this stress. Furthermore, the use of wild relatives in breeding programmes for drought tolerance is also limited and needs to be focused. Even after six years of decoding the whole genome sequence of mungbean, the genome-wide characterization and expression of various gene families and transcriptional factors are still lacking. Due to the complex nature of drought tolerance, it also requires integrating high throughput multi-omics approaches to increase breeding efficiency and genomic selection for rapid genetic gains to develop drought-tolerant mungbean cultivars. This review highlights the impact of drought stress on mungbean and mitigation strategies for breeding high-yielding drought-tolerant mungbean varieties through classical and modern omics technologies.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 619
Author(s):  
Sadeeka Layomi Jayasinghe ◽  
Lalit Kumar

Even though climate change is having an increasing impact on tea plants, systematic reviews on the impact of climate change on the tea system are scarce. This review was undertaken to assess and synthesize the knowledge around the impacts of current and future climate on yield, quality, and climate suitability for tea; the historical roots and the most influential papers on the aforementioned topics; and the key adaptation and mitigation strategies that are practiced in tea fields. Our findings show that a large number of studies have focused on the impact of climate change on tea quality, followed by tea yield, while a smaller number of studies have concentrated on climate suitability. Three pronounced reference peaks found in Reference Publication Year Spectroscopy (RYPS) represent the most significant papers associated with the yield, quality, and climate suitability for tea. Tea yield increases with elevated CO2 levels, but this increment could be substantially affected by an increasing temperature. Other climatic factors are uneven rainfall, extreme weather events, and climate-driven abiotic stressors. An altered climate presents both advantages and disadvantages for tea quality due to the uncertainty of the concentrations of biochemicals in tea leaves. Climate change creates losses, gains, and shifts of climate suitability for tea habitats. Further studies are required in order to fill the knowledge gaps identified through the present review, such as an investigation of the interaction between the tea plant and multiple environmental factors that mimic real-world conditions and then studies on its impact on the tea system, as well as the design of ensemble modeling approaches to predict climate suitability for tea. Finally, we outline multifaceted and evidence-based adaptive and mitigation strategies that can be implemented in tea fields to alleviate the undesirable impacts of climate change.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 405
Author(s):  
Yaxin Sang ◽  
Juan-Carlos Mejuto ◽  
Jianbo Xiao ◽  
Jesus Simal-Gandara

Agro-industries should adopt effective strategies to use agrochemicals such as glyphosate herbicides cautiously in order to protect public health. This entails careful testing and risk assessment of available choices, and also educating farmers and users with mitigation strategies in ecosystem protection and sustainable development. The key to success in this endeavour is using scientific research on biological pest control, organic farming and regulatory control, etc., for new developments in food production and safety, and for environmental protection. Education and research is of paramount importance for food and nutrition security in the shadow of climate change, and their consequences in food production and consumption safety and sustainability. This review, therefore, diagnoses on the use of glyphosate and the associated development of glyphosate-resistant weeds. It also deals with the risk assessment on human health of glyphosate formulations through environment and dietary exposures based on the impact of glyphosate and its metabolite AMPA—(aminomethyl)phosphonic acid—on water and food. All this to setup further conclusions and recommendations on the regulated use of glyphosate and how to mitigate the adverse effects.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 299
Author(s):  
Jaime Pinilla ◽  
Miguel Negrín

The interrupted time series analysis is a quasi-experimental design used to evaluate the effectiveness of an intervention. Segmented linear regression models have been the most used models to carry out this analysis. However, they assume a linear trend that may not be appropriate in many situations. In this paper, we show how generalized additive models (GAMs), a non-parametric regression-based method, can be useful to accommodate nonlinear trends. An analysis with simulated data is carried out to assess the performance of both models. Data were simulated from linear and non-linear (quadratic and cubic) functions. The results of this analysis show how GAMs improve on segmented linear regression models when the trend is non-linear, but they also show a good performance when the trend is linear. A real-life application where the impact of the 2012 Spanish cost-sharing reforms on pharmaceutical prescription is also analyzed. Seasonality and an indicator variable for the stockpiling effect are included as explanatory variables. The segmented linear regression model shows good fit of the data. However, the GAM concludes that the hypothesis of linear trend is rejected. The estimated level shift is similar for both models but the cumulative absolute effect on the number of prescriptions is lower in GAM.


2021 ◽  
Vol 9 (1) ◽  
pp. 5
Author(s):  
André Kretzschmar ◽  
Stephan Nebe

In order to investigate the nature of complex problem solving (CPS) within the nomological network of cognitive abilities, few studies have simultantiously considered working memory and intelligence, and results are inconsistent. The Brunswik symmetry principle was recently discussed as a possible explanation for the inconsistent findings because the operationalizations differed greatly between the studies. Following this assumption, 16 different combinations of operationalizations of working memory and fluid reasoning were examined in the present study (N = 152). Based on structural equation modeling with single-indicator latent variables (i.e., corrected for measurement error), it was found that working memory incrementally explained CPS variance above and beyond fluid reasoning in only 2 of 16 conditions. However, according to the Brunswik symmetry principle, both conditions can be interpreted as an asymmetrical (unfair) comparison, in which working memory was artificially favored over fluid reasoning. We conclude that there is little evidence that working memory plays a unique role in solving complex problems independent of fluid reasoning. Furthermore, the impact of the Brunswik symmetry principle was clearly demonstrated as the explained variance in CPS varied between 4 and 31%, depending on which operationalizations of working memory and fluid reasoning were considered. We argue that future studies investigating the interplay of cognitive abilities will benefit if the Brunswik principle is taken into account.


Sign in / Sign up

Export Citation Format

Share Document