scholarly journals Conditional-GAN Based Data Augmentation for Deep Learning Task Classifier Improvement Using fNIRS Data

2021 ◽  
Vol 4 ◽  
Author(s):  
Sajila D. Wickramaratne ◽  
Md.Shaad Mahmud

Functional near-infrared spectroscopy (fNIRS) is a neuroimaging technique used for mapping the functioning human cortex. fNIRS can be widely used in population studies due to the technology’s economic, non-invasive, and portable nature. fNIRS can be used for task classification, a crucial part of functioning with Brain-Computer Interfaces (BCIs). fNIRS data are multidimensional and complex, making them ideal for deep learning algorithms for classification. Deep Learning classifiers typically need a large amount of data to be appropriately trained without over-fitting. Generative networks can be used in such cases where a substantial amount of data is required. Still, the collection is complex due to various constraints. Conditional Generative Adversarial Networks (CGAN) can generate artificial samples of a specific category to improve the accuracy of the deep learning classifier when the sample size is insufficient. The proposed system uses a CGAN with a CNN classifier to enhance the accuracy through data augmentation. The system can determine whether the subject’s task is a Left Finger Tap, Right Finger Tap, or Foot Tap based on the fNIRS data patterns. The authors obtained a task classification accuracy of 96.67% for the CGAN-CNN combination.

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Bo Pan ◽  
Wei Zheng

Emotion recognition plays an important role in the field of human-computer interaction (HCI). Automatic emotion recognition based on EEG is an important topic in brain-computer interface (BCI) applications. Currently, deep learning has been widely used in the field of EEG emotion recognition and has achieved remarkable results. However, due to the cost of data collection, most EEG datasets have only a small amount of EEG data, and the sample categories are unbalanced in these datasets. These problems will make it difficult for the deep learning model to predict the emotional state. In this paper, we propose a new sample generation method using generative adversarial networks to solve the problem of EEG sample shortage and sample category imbalance. In experiments, we explore the performance of emotion recognition with the frequency band correlation and frequency band separation computational models before and after data augmentation on standard EEG-based emotion datasets. Our experimental results show that the method of generative adversarial networks for data augmentation can effectively improve the performance of emotion recognition based on the deep learning model. And we find that the frequency band correlation deep learning model is more conducive to emotion recognition.


Author(s):  
Ioannis Maniadis ◽  
Vassilis Solachidis ◽  
Nicholas Vretos ◽  
Petros Daras

Modern deep learning techniques have proven that they have the capacity to be successful in a wide area of domains and tasks, including applications related to 3D and 2D images. However, their quality depends on the quality and quantity of the data with which models are trained. As the capacity of deep learning models increases, data availability becomes the most significant. To counter this issue, various techniques are utilized, including data augmentation, which refers to the practice of expanding the original dataset with artificially created samples. One approach that has been found is the generative adversarial networks (GANs), which, unlike other domain-agnostic transformation-based methods, can produce diverse samples that belong to a given data distribution. Taking advantage of this property, a multitude of GAN architectures has been leveraged for data augmentation applications. The subject of this chapter is to review and organize implementations of this approach on 3D and 2D imagery, examine the methods that were used, and survey the areas in which they were applied.


2021 ◽  
Vol 13 (22) ◽  
pp. 4590
Author(s):  
Yunpeng Yue ◽  
Hai Liu ◽  
Xu Meng ◽  
Yinguang Li ◽  
Yanliang Du

Deep learning models have achieved success in image recognition and have shown great potential for interpretation of ground penetrating radar (GPR) data. However, training reliable deep learning models requires massive labeled data, which are usually not easy to obtain due to the high costs of data acquisition and field validation. This paper proposes an improved least square generative adversarial networks (LSGAN) model which employs the loss functions of LSGAN and convolutional neural networks (CNN) to generate GPR images. This model can generate high-precision GPR data to address the scarcity of labelled GPR data. We evaluate the proposed model using Frechet Inception Distance (FID) evaluation index and compare it with other existing GAN models and find it outperforms the other two models on a lower FID score. In addition, the adaptability of the LSGAN-generated images for GPR data augmentation is investigated by YOLOv4 model, which is employed to detect rebars in field GPR images. It is verified that inclusion of LSGAN-generated images in the training GPR dataset can increase the target diversity and improve the detection precision by 10%, compared with the model trained on the dataset containing 500 field GPR images.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6850
Author(s):  
Yuanming Li ◽  
Bonhwa Ku ◽  
Shou Zhang ◽  
Jae-Kwang Ahn ◽  
Hanseok Ko

Realistic synthetic data can be useful for data augmentation when training deep learning models to improve seismological detection and classification performance. In recent years, various deep learning techniques have been successfully applied in modern seismology. Due to the performance of deep learning depends on a sufficient volume of data, the data augmentation technique as a data-space solution is widely utilized. In this paper, we propose a Generative Adversarial Networks (GANs) based model that uses conditional knowledge to generate high-quality seismic waveforms. Unlike the existing method of generating samples directly from noise, the proposed method generates synthetic samples based on the statistical characteristics of real seismic waveforms in embedding space. Moreover, a content loss is added to relate high-level features extracted by a pre-trained model to the objective function to enhance the quality of the synthetic data. The classification accuracy is increased from 96.84% to 97.92% after mixing a certain amount of synthetic seismic waveforms, and results of the quality of seismic characteristics derived from the representative experiment show that the proposed model provides an effective structure for generating high-quality synthetic seismic waveforms. Thus, the proposed model is experimentally validated as a promising approach to realistic high-quality seismic waveform data augmentation.


2020 ◽  
Vol 20 (1) ◽  
pp. 29
Author(s):  
R. Sandra Yuwana ◽  
Fani Fauziah ◽  
Ana Heryana ◽  
Dikdik Krisnandi ◽  
R. Budiarianto Suryo Kusumo ◽  
...  

Deep learning technology has a better result when trained using an abundant amount of data. However, collecting such data is expensive and time consuming.  On the other hand, limited data often be the inevitable condition. To increase the number of data, data augmentation is usually implemented.  By using it, the original data are transformed, by rotating, shifting, or both, to generate new data artificially. In this paper, generative adversarial networks (GAN) and deep convolutional GAN (DCGAN) are used for data augmentation. Both approaches are applied for diseases detection. The performance of the tea diseases detection on the augmented data is evaluated using various deep convolutional neural network (DCNN) including AlexNet, DenseNet, ResNet, and Xception.  The experimental results indicate that the highest GAN accuracy is obtained by DenseNet architecture, which is 88.84%, baselines accuracy on the same architecture is 86.30%. The results of DCGAN accuracy on the use of the same architecture show a similar trend, which is 88.86%. 


2020 ◽  
Vol 8 (6) ◽  
pp. 2037-2040

Any image we perceive through a screen is made of three separate channels, R, G, and B. With the help of these three channels; an image comes to colour. Any pictures taken during the old times were in grayscale format. To convert any given grayscale image into colour, we need the help of a photoshop professional, which might take hours of the workforce. In a revolution to this, we propose an utterly programmed methodology that produces lively and practical colourizations. Generative adversarial networks are an unsupervised learning task in machine learning that involves automatically discovering and learning the regularities or patterns in input file to get an output. In our case, a grayscale image can be converted to colour with the help of GANs.


2021 ◽  
Vol 11 (7) ◽  
pp. 3086
Author(s):  
Ricardo Silva Peres ◽  
Miguel Azevedo ◽  
Sara Oleiro Araújo ◽  
Magno Guedes ◽  
Fábio Miranda ◽  
...  

The technological advances brought forth by the Industry 4.0 paradigm have renewed the disruptive potential of artificial intelligence in the manufacturing sector, building the data-driven era on top of concepts such as Cyber–Physical Systems and the Internet of Things. However, data availability remains a major challenge for the success of these solutions, particularly concerning those based on deep learning approaches. Specifically in the quality inspection of structural adhesive applications, found commonly in the automotive domain, defect data with sufficient variety, volume and quality is generally costly, time-consuming and inefficient to obtain, jeopardizing the viability of such approaches due to data scarcity. To mitigate this, we propose a novel approach to generate synthetic training data for this application, leveraging recent breakthroughs in training generative adversarial networks with limited data to improve the performance of automated inspection methods based on deep learning, especially for imbalanced datasets. Preliminary results in a real automotive pilot cell show promise in this direction, with the approach being able to generate realistic adhesive bead images and consequently object detection models showing improved mean average precision at different thresholds when trained on the augmented dataset. For reproducibility purposes, the model weights, configurations and data encompassed in this study are made publicly available.


Sign in / Sign up

Export Citation Format

Share Document