scholarly journals Ground Magnetic Surveying and Susceptibility Mapping Across Weathered Basalt Dikes Reveal Soil Creep and Pedoturbation

2021 ◽  
Vol 8 ◽  
Author(s):  
Tilo von Dobeneck ◽  
Maximilian Müller ◽  
Benjamin Bosbach ◽  
Andreas Klügel

Ground magnetic survey profiles across a soil-covered and weathered mafic dike in sedimentary host rock not only permit to delineate the strike, width and burial depth of the intrusive basalt sheet, but also reflect the subsurface deformation of its clayey weathering products. We illustrate this finding and its practical geomorphological applicability by an example from the mid-German Heldburg Dike Swarm, where blue- and olive-gray basalt-derived clays inherited not just the dike space previously occupied by the basalt, but also large parts of its magnetic iron minerals and their strong induced and remanent magnetization. Such ductile basaltic “marker soils” deform and move with the surrounding low-magnetic host soils, but remain distinguishable by their contrasting colors and high magnetic susceptibility. Ground magnetic surveys can therefore delineate soil creep distance at meter- and basalt weathering depth at decimeter-precision. Magnetic mapping of a weathered dike’s cross-section from an exploration trench by in-situ susceptometry permits to analyze past soil deformation in great detail. Weathering and solifluction transforms the simple “vertical sheet” anomalies of dikes into complex, but still interpretable composite patterns, providing a new and promising exploratory approach for field studies concerned with soil creep and pedoturbation.

Shore & Beach ◽  
2019 ◽  
pp. 3-14 ◽  
Author(s):  
Joshua Davis ◽  
Diana Mitsova ◽  
Tynon Briggs ◽  
Tiffany Briggs

Wave forcing from hurricanes, nor’easters, and energetic storms can cause erosion of the berm and beach face resulting in increased vulnerability of dunes and coastal infrastructure. LIDAR or other surveying techniques have quantified post-event morphology, but there is a lack of in situ hydrodynamic and morphodynamic measurements during extreme storm events. Two field studies were conducted in March 2018 and April 2019 at Bethany Beach, Delaware, where in situ hydrodynamic and morphodynamic measurements were made during a nor’easter (Nor’easter Riley) and an energetic storm (Easter Eve Storm). An array of sensors to measure water velocity, water depth, water elevation and bed elevation were mounted to scaffold pipes and deployed in a single cross-shore transect. Water velocity was measured using an electro-magnetic current meter while water and bed elevations were measured using an acoustic distance meter along with an algorithm to differentiate between the water and bed during swash processes. GPS profiles of the beach face were measured during every day-time low tide throughout the storm events. Both accretion and erosion were measured at different cross-shore positions and at different times during the storm events. Morphodynamic change along the back-beach was found to be related to berm erosion, suggesting an important morphologic feedback mechanism. Accumulated wave energy and wave energy flux per unit area between Nor’easter Riley and a recent mid-Atlantic hurricane (Hurricane Dorian) were calculated and compared. Coastal Observations: JALBTCX/NCMP emergency-response airborne Lidar coastal mapping & quick response data products for 2016/2017/2018 hurricane impact assessments


1998 ◽  
Vol 37 (2) ◽  
pp. 137-144 ◽  
Author(s):  
Elisa Garvey ◽  
John E. Tobiason ◽  
Michael Hayes ◽  
Evelyn Wolfram ◽  
David A. Reckhow ◽  
...  

This paper reports on field studies and model development aimed at understanding coliform fate and transport in the Quabbin Reservoir, an oligotrophic drinking water supply reservoir. An investigation of reservoir currents suggested the importance of wind driven phenomena, and that both lateral and vertical circulation patterns exist. In-situ experiments of coliform decay suggested dependence on light intensity and yielded an appropriate decay coefficient to be used in CE-QUAL-W2, a two-dimensional hydrodynamic and water quality model. Modeling confirmed the sensitivity of reservoir outlet concentration to vertical variability within the reservoir, meteorological conditions, and location of coliform source.


2020 ◽  
Vol 01 ◽  
Author(s):  
Henrik Jensen ◽  
Pernille D. Pedersen

Aims: To evaluate the real-life effect of photocatalytic surfaces on the air quality at two test-sites in Denmark. Background: Poor air quality is today one of the largest environmental issues, due to the adverse effects on human health associated with high levels of air pollution, including respiratory issues, cardiovascular disease (CVD), and lung cancer. NOx removal by TiO2 based photocatalysis is a tool to improve air quality locally in areas where people are exposed. Methods: Two test sites were constructed in Roskilde and Copenhage airport. In Roskilde, the existing asphalt at two parking lots was treated with TiO2 containing liquid and an in-situ ISO 22197-1 test setup was developed to enable in-situ evaluation of the activity of the asphalt. In CPH airport, photocatalytic concrete tiles were installed at the "kiss and fly" parking lot, and NOx levels were continuously monitored in 0.5 m by CLD at the active site and a comparable reference site before and after installation for a period of 2 years. Results: The Roskilde showed high stability of the photocatalytic coating with the activity being largely unchanged over a period of 2 years. The CPH airport study showed that the average NOx levels were decreased by 12 % comparing the before and after NOx concentrations at the active and reference site. Conclusion: The joined results of the two Danish demonstration projects illustrate a high stability of the photocatalytic coating as well as a high potential for improvements of the real-life air quality in polluted areas.


1995 ◽  
Vol 32 (4) ◽  
pp. 199-204 ◽  
Author(s):  
Ravi Godbole ◽  
Ralph Alcock

2014 ◽  
Vol 44 (1) ◽  
pp. 104-127 ◽  
Author(s):  
Michael Schwendeman ◽  
Jim Thomson ◽  
Johannes R. Gemmrich

Abstract Coupled in situ and remote sensing measurements of young, strongly forced wind waves are applied to assess the role of breaking in an evolving wave field. In situ measurements of turbulent energy dissipation from wave-following Surface Wave Instrument Float with Tracking (SWIFT) drifters and a tethered acoustic Doppler sonar system are consistent with wave evolution and wind input (as estimated using the radiative transfer equation). The Phillips breaking crest distribution Λ(c) is calculated using stabilized shipboard video recordings and the Fourier-based method of Thomson and Jessup, with minor modifications. The resulting Λ(c) are unimodal distributions centered around half of the phase speed of the dominant waves, consistent with several recent studies. Breaking rates from Λ(c) increase with slope, similar to in situ dissipation. However, comparison of the breaking rate estimates from the shipboard video recordings with the SWIFT video recordings show that the breaking rate is likely underestimated in the shipboard video when wave conditions are calmer and breaking crests are small. The breaking strength parameter b is calculated by comparison of the fifth moment of Λ(c) with the measured dissipation rates. Neglecting recordings with inconsistent breaking rates, the resulting b data do not display any clear trends and are in the range of other reported values. The Λ(c) distributions are compared with the Phillips equilibrium range prediction and previous laboratory and field studies, leading to the identification of several inconsistencies.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ana Carolina Bender ◽  
Manuela Guerreiro ◽  
Bernardete Dias Sequeira ◽  
Júlio Mendes

Purpose The purpose of this study is to explore the hedonic experience and its formation at heritage attractions. Design/methodology/approach A qualitative and exploratory approach was applied, using data from 21 semi-structured interviews and three in-situ focus groups. Findings Findings highlight that senses, imagery and emotions are stimulated by the physical landscape and by triggers of memorable experiences. Research limitations/implications To further explore this topic, a broader range of heritage attractions and perspectives from the diverse stakeholders involved in the management and consumption of these sites is needed. Originality/value Given the scarcity of research dedicated to the hedonic experience at heritage sites, this study provides a contribution by exploring the visitor’s perspective and points out relevant insights. As the hedonic feelings of pleasure, comfort and related affective responses impact the quality of memorable experiences, relevant implications for theory and practice are discussed.


2021 ◽  
Vol 20 (2) ◽  
pp. 99-106
Author(s):  
O.I. Popoola ◽  
O.A. Adenuga ◽  
E.O. Joshua

The geological map of the old western region of Nigeria indicates the presence of iron ore deposit at Iboro village Ogun state (7.9983o - 7.99933o N, 3.5790o - 3.5890o E). Hence a ground magnetic survey was carried out at a location at Iboro village so as to delineate the subsurface magnetic anomalies and to know whether the anomalies favour accumulation of magnetic minerals. The survey was carried out using high resolution proton precession magnetometer model G-856X. Eight traverses were run at 5m separations and earth magnetic intensity values were measured at 10m intervals along each traverse; the acquired data were corrected for drift. The residual anomalies obtained by removal of regional gradient from observed data using trend analysis were presented as profiles and maps. The treated data were qualitatively and quantitatively interpreted and the results gave values for the total ground magnetic anomalies that varied between a minimum and maximum peak values of about -33.0 and 30.6nT respectively. Depth to the basement rock was estimated using Peter’s half slope method which gave a maximum depth of about 13m. The contour maps and the total relative graphs present the subsurface picture of the geological structure that is assumed to harbour the metallic minerals through the action of the field towards the concentration of anomalies. It was suspected that the overburden was relatively thin in the study area and the minerals were at a shallow depth.


Author(s):  
Dumisani John Hlatywayo ◽  
Emmanuel Sakala

Optimum magnetic signatures for drill-hole targeting in gold exploration in Mbudzane were resolved from induced polarisation-resistivity and magnetic anomalies. Total magnetic field and a gold-in-soil map showed the area is magnetically quiet with high anomalous values along old gold workings. Induced polarisation was carried out along a grid for lines of 500m length, 50m separation and a baseline oriented at 330˚. The survey comprised a gradient array and three real sections. The magnetic survey was conducted over the same grid as the induced polarisation. Stations were set at 5m intervals for a line spacing of 50m. The results show intense anomalies that suggest different degrees of magnetic alteration and a set of conjugate lineaments and faults that possibly control the mineralisation in Mbudzane. The tilt derivative of the reduced-to-pole image resolves the separation between anomalies, giving information on the faulting. High chargeability is confined to the sheared and silicified mafic schist. The gradient resistivity image revealed contact between rock formations. Real section IP shows coincident low chargeability – low resistivity anomalies close to the surface. Chargeability intensity increases with depth, suggesting incipient development of disseminated sulphide replacement zones. A strong correlation between ground magnetic inferred contacts and apparent resistivity-chargeability anomalies forms the basis for suggesting a new drill-hole targeting. They dictate both the depth and angle at which drilling should be carried out. These results should be applicable to any region where drill-hole targeting in gold exploration may be required.


Author(s):  
Gennadii Boldyrev ◽  
Gennadii Novichkov

In article the description and results of in situ test of soils is resulted by of Russian drilling test (RDT). It involves several drilling parameters: torque, axial force, rotation speed, linear velocity, tip resistance for identifying soil strata of different strengths and for determining dependences between drilling parameters and soil deformation properties.


Sign in / Sign up

Export Citation Format

Share Document