scholarly journals Commentary: Deformation and Fault Propagation at the Lateral Termination of a Subduction Zone: The Alfeo Fault System in the Calabrian Arc, Southern Italy

2020 ◽  
Vol 8 ◽  
Author(s):  
Andrea Argnani
2013 ◽  
Vol 362 ◽  
pp. 99-107 ◽  
Author(s):  
Shu-Kun Hsu ◽  
Yi-Ching Yeh ◽  
Jean-Claude Sibuet ◽  
Wen-Bin Doo ◽  
Ching-Hui Tsai

2021 ◽  
Vol 1 (2) ◽  
pp. 75-84
Author(s):  
Charlotte Pizer ◽  
Kate Clark ◽  
Jamie Howarth ◽  
Ed Garrett ◽  
Xiaoming Wang ◽  
...  

Abstract Geological records of subduction earthquakes, essential for seismic and tsunami hazard assessment, are difficult to obtain at transitional plate boundaries, because upper-plate fault earthquake deformation can mask the subduction zone signal. Here, we examine unusual shell layers within a paleolagoon at Lake Grassmere, at the transition zone between the Hikurangi subduction zone and the Marlborough fault system. Based on biostratigraphic and sedimentological analyses, we interpret the shell layers as tsunami deposits. These are dated at 2145–1837 and 1505–1283 yr B.P., and the most likely source of these tsunamis was ruptures of the southern Hikurangi subduction interface. Identification of these two large earthquakes brings the total record of southern Hikurangi subduction earthquakes to four in the past 2000 yr. For the first time, it is possible to obtain a geologically constrained recurrence interval for the southern Hikurangi subduction zone. We calculate a recurrence interval of 500 yr (335–655 yr, 95% confidence interval) and a coefficient of variation of 0.27 (0.0–0.47, 95% confidence interval). The probability of a large subduction earthquake on the southern Hikurangi subduction zone is 26% within the next 50 yr. We find no consistent temporal relationship between subduction earthquakes and large earthquakes on upper-plate faults.


2020 ◽  
Vol 57 (6) ◽  
pp. 709-724
Author(s):  
John Barefoot ◽  
Elisabeth S. Nadin ◽  
Rainer J. Newberry ◽  
Alfredo Camacho

Subduction zone processes are challenging to study because of the rarity of good exposures and the complexity of rock relationships within accretionary prisms. We report the results of field mapping and petrographic, geochemical, and geochronological analyses of the McHugh Complex accretionary prism mélange in south-central Alaska that was recently exposed due to retreat of the Nelchina Glacier. Our new mapping and analyses of the mélange, as well as adjacent Talkeetna arc intrusives, suggests that the previously mapped trace of the Border Ranges fault should shift northward in this location. Detailed petrographic analysis places this mélange exposure with the Potter Creek assemblage of the McHugh Complex. Blocks of pillow lavas within the mélange have both mid-ocean ridge basalt and intra-plate geochemical affinities, attesting to the complex relations of subduction-zone inputs in an alternating erosive–accretionary margin. A new zircon U–Pb age and geochemical analyses of a set of felsic dikes that cross-cut the accretionary sequence provide constraints on the regional tectonic evolution, including near-trench plutonism associated with the migration of a subducting spreading ridge along the southern Alaska margin during the Paleocene–Eocene. The McHugh section and cross-cutting dikes in this location are pervasively hydrothermally altered, which we attribute to elevated temperatures related to ridge subduction. Late-stage motion along the Border Ranges fault system, which is also recorded in the area, may also have contributed to the widespread alteration. Our data indicate that the Talkeetna volcanic arc and associated accretionary prism sediments were in their current configuration by 55 Ma.


Sign in / Sign up

Export Citation Format

Share Document