scholarly journals Glacier-Related Hazards Along the International Karakoram Highway: Status and Future Perspectives

2021 ◽  
Vol 9 ◽  
Author(s):  
Yongpeng Gao ◽  
Shiyin Liu ◽  
Miaomiao Qi ◽  
Fuming Xie ◽  
Kunpeng Wu ◽  
...  

The China–Pakistan international Karakoram Highway passes through the core area of the “Karakoram Anomaly,” whose glaciers have maintained or increased their mass during a period when most glaciers worldwide have receded. We synthesized the literature and used remote-sensing techniques to review the types, distribution, characteristics, causes and frequency of major glacial hazards along the Karakoram Highway. We found that the glacier-related hazards could be divided into direct and indirect hazards, including glacier surges, glacial lake outburst floods, and glacial floods, which are concentrated in East Pamir and the Hunza River Basin. In the past 100 years, hazards from glaciers surges and glacial floods only occurred once and twice, respectively, which appear suddenly, with the hazard-causing process being short-lived and occurring mainly in the summer. Glacial lake outburst floods mainly occur in the spring and summer in the Hunza River Basin. Among these, ice-dammed lakes have the highest frequency of flooding, their formation and outbursts being closely related to the sudden advancement of surge-type glaciers. Under the background of global climate warming, we speculate that the glacier surge cycle may shorten and the frequency of the formation and outbursts in the glacial lakes may increase. In the future, we should combine models and new field observations to simulate, and deepen our understanding of the physical mechanisms of different glacier-related hazards. In particular, on-site monitoring should be carried out, to include the evolution of glaciers subglacial hydrological systems, the thermal state at the base of the glaciers, and the opening and closing of drainage channels at the base of the ice dams.

2021 ◽  
Author(s):  
Sajid Ali ◽  
Garee Khan ◽  
Wajid Hassan ◽  
Javed Akhter Qureshi ◽  
Iram Bano

Abstract Ice masses and snow of Hunza River Basin (HRB) are an important primary source of fresh water and lifeline for downstream inhabitants. Changing climatic conditions seriously put an impact on these available ice and snow masses. These glaciers may affect downstream population by glacial lake outburst floods (GLOF) and surge events due to climatic variation. So, monitoring of these glaciers and available ice masses are important. This research delivers an approach for selected glaciers of the Hunza river basin. An attempt is made in this study using Landsat (OLI, ETM, ETM+, TM), digital elevation model (DEM), Geographic Information System and Remote Sensing techniques (RS&GIS) techniques. We delineated 27 glaciers within HRB from the period of 1990-2018. These glaciers' total area is about 2589.75 ±86km 2 in 1990 and about 2565.12 ±68km 2 in 2018. Our results revealed that from 2009 to 2015, glacier coverage of HRB advanced with a mean annual advance rate of 2.22±0.1 km 2 a -1 . Conversely, from 1994 to 1999, the strongest reduction in glacier area with a mean rate of - 3.126±0.3km 2 a -1 is recorded. The glaciers of HRB are relatively stable compared to Hindukush, Himalayan and Tibetan Plateau (TP) region of the world. The steep slope glacier's retreat rate is more than that of gentle slope glaciers, and the glaciers below elevation of 5000 m above sea level change significantly. Based on climate data from 1995-2018, HRB shows a decreasing trend in temperature and increasing precipitation. The glacier area's overall retreat is due to an increase in summer temperature while the glacier advancement is induced possibly by winter and autumn precipitation.


2020 ◽  
Author(s):  
Muhammad Saifullah ◽  
Shiyin Liu ◽  
Muhammad Adnan ◽  
Muhammad Ashraf ◽  
Muhammad Zaman ◽  
...  

The China-Pakistan Economic Corridor (CPEC) passes through the Hunza River basin of Pakistan. The current study investigates the creation and effects of end moraine, supra-glacial, and barrier lakes by field visits and remote sensing techniques along the CPEC in the Hunza River basin. The surging and moraine type glaciers are considered the most dangerous type of glaciers that cause Glacial Lake Outburst Floods (GLOFs) in the study basin. It can be concluded from the 40 years observations of Karakoram glaciers that surge-type and non-surge-type glaciers are not significantly different with respect to mass change. The recurrent surging of Khurdopin Glacier resulted in the creation of Khurdopin Glacial Lake in the Shimshal valley of the Hunza River basin. Such glacial lakes offer main sources of freshwater; however, when their dams are suddenly breached and water drained, catastrophic GLOFs appear and pose a great threat to people and infrastructure in downstream areas. This situation calls for an in-depth study on GLOF risks along the CPEC route and incorporation of GLOF for future policy formulation in the country for the CPEC project so that the government may take serious action for prevention, response to GLOFs, and rehabilitation and reconstruction of the areas.


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1376
Author(s):  
Taigang Zhang ◽  
Weicai Wang ◽  
Tanguang Gao ◽  
Baosheng An

A glacial lake outburst flood (GLOF) is a typical glacier-related hazard in high mountain regions. In recent decades, glacial lakes in the Himalayas have expanded rapidly due to climate warming and glacial retreat. Some of these lakes are unstable, and may suddenly burst under different triggering factors, thus draining large amounts of water and impacting downstream social and economic development. Glacial lakes in the Poiqu River basin, Central Himalayas, have attracted great attention since GLOFs originating there could have a transboundary impact on both China and Nepal, as occurred during the Cirenmaco GLOF in 1981 and the Gongbatongshaco GLOF in 2016. Based on previous studies of this basin, we selected seven very high-risk moraine-dammed lakes (Gangxico, Galongco, Jialongco, Cirenmaco, Taraco, Beihu, and Cawuqudenco) to simulate GLOF propagation at different drainage percentage scenarios (i.e., 25%, 50%, 75%, and 100%), and to conduct hazard assessment. The results show that, when any glacial lake is drained completely or partly, most of the floods will enter Nepal after raging in China, and will continue to cause damage. In summary, 57.5 km of roads, 754 buildings, 3.3 km2 of farmland, and 25 bridges are at risk of damage due to GLOFs. The potentially inundated area within the Chinese part of the Poiqu River basin exceeds 45 km2. Due to the destructive impacts of GLOFs on downstream areas, appropriate and effective measures should be implemented to adapt to GLOF risk. We finally present a paradigm for conducting hazard assessment and risk management. It uses only freely available data and thus is easy to apply.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 538
Author(s):  
Hongyu Duan ◽  
Xiaojun Yao ◽  
Dahong Zhang ◽  
Miaomiao Qi ◽  
Juan Liu

The southeastern Tibetan Plateau, where monsoonal temperate glaciers are most developed, has a huge number of glacial lakes. Based on Landsat Operational Land Imager (OLI) images, 192 glacial lakes with a total area of 45.73 ± 6.18 km2 in 2016 were delineated in the Yi’ong Zangbo River Basin. Glacial lakes with areas of less than 0.1 km2 accounted for 81.77% of the total number, and glacial lakes located above 4500 m elevation comprised 83.33%. Dramatic glacier melting caused by climate warming has occurred, resulting in the formation and expansion of glacial lakes and the increase of potential glacial lake outburst floods (GLOFs) risk. From 1970 to 2016, the total area of glaciers in the basin has decreased by 35.39%, whereas the number and total area of glacial lakes have, respectively, increased by 86 and 1.59 km2. In that time, 110 new glacial lakes emerged, whereas 24 of the original lakes disappeared. The newly formed lakes have a smaller mean area but higher mean elevation than the lakes that disappeared. Based on five indicators, a first-order method was used to identify glacial lakes that pose potential threats. We identified 10 lakes with very high, 7 with high, 31 with medium, and 19 with low GLOF susceptibility, out of 67 moraine-dammed glacial lakes with areas larger than 0.02 km2. Understanding the behavior of glaciers and glacial lakes is a vital aspect of GLOFs disaster management, and the monitoring of glacial lakes should be strengthened.


2015 ◽  
Vol 4 ◽  
pp. 56-67
Author(s):  
Shiva Kant Dube

Geographically, Nepal is situated on the lap of the Himalayas occupying 0.3 percent area of Asia and 0.03 percent of the world. Recently, global climate change has invited enormous environmental hazards and disasters in the Hindu-Kush Himalayan region. Catastrophic floods originating from the outburst of glacial lakes have been recognized as one of the primary natural hazards in Nepal, making downstream areas vulnerable. Frequent severe floodscaused by glacier outburst in the Nepal Himalayas, occur once every three years. Nine potentially dangerous glaciers were identified in the Eastern and Central Himalayas during pre- and post-monsoon seasons. At national and international level, Glacial Lake Outburst Floods (GLOF) in Nepal, are receiving considerable attention. Such floods endanger thousands of people, hundreds of villages and basic infrastructure causing disasters. This paper incorporates a case of flash-flood caused by GLOF and torrential rain in India which can be taken as a lesson to mitigate/minimize massive loss of lives and property in the Nepalese context.DOI: http://dx.doi.org/10.3126/av.v4i0.12360Academic Voices Vol.4 2014: 56-67


2015 ◽  
Vol 514 ◽  
pp. 83-91 ◽  
Author(s):  
Jens Søndergaard ◽  
Mikkel Tamstorf ◽  
Bo Elberling ◽  
Martin M. Larsen ◽  
Maria Rask Mylius ◽  
...  

Hydrology ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 3
Author(s):  
Vitalii Zaginaev ◽  
Kristyna Falatkova ◽  
Bohumir Jansky ◽  
Miroslav Sobr ◽  
Sergey Erokhin

Debris flows caused by glacial lake outburst floods (GLOFs) are common hazards in mountain environments. The risk posed by glacial lake outburst hazards is particularly evaluated where the lower reaches of catchments are populated. A potentially dangerous lake has been identified adjacent to the Uchitel Glacier in Northern Tien Shan. This lake formed between 1988 and 1994 on the site of a retreated glacier in the upper part of the Aksay Valley. In this study we consider the possibility of an outburst of this pro-glacial lake in the future. The study involved bathymetry mapping of the lake, detailed profile sections of the valley, flow rate measurements on the Aksay river, and monitoring of the lake development using satellite images. Modelling of secondary debris flow inundation heights and hazard footprints has been undertaken. The outburst of this lake could cause powerful debris flows posing a threat to permanent residents living downstream, in the Ala-Archa Valley. Monitoring of the lake over the past ten years suggests certain changes in the runoff to the subsurface, and an increase in lake depth is observed. Glacial lakes with subsurface drainage are considered to be the most hazardous type as the knowledge of drainage channels functioning is still very limited and, thus, the timing of an outburst is hard to predict. Development of monitoring approaches to support forecasting of these hazards is of paramount importance to safety in mountain territories globally.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Tao Che ◽  
Lin Xiao ◽  
Yuei-An Liou

Latest satellite images have been utilized to update the inventories of glaciers and glacial lakes in the Pumqu river basin, Xizang (Tibet), in the study. Compared to the inventories in 1970s, the areas of glaciers are reduced by 19.05% while the areas of glacial lakes are increased by 26.76%. The magnitudes of glacier retreat rate and glacial lake increase rate during the period of 2001–2013 are more significant than those for the period of the 1970s–2001. The accelerated changes in areas of the glaciers and glacial lakes, as well as the increasing temperature and rising variability of precipitation, have resulted in an increased risk of glacial lake outburst floods (GLOFs) in the Pumqu river basin. Integrated criteria were established to identify potentially dangerous glacial lakes based on a bibliometric analysis method. It is found, in total, 19 glacial lakes were identified as dangerous. Such finding suggests that there is an immediate need to conduct field surveys not only to validate the findings, but also to acquire information for further use in order to assure the welfare of the humans.


Sign in / Sign up

Export Citation Format

Share Document