scholarly journals Evaluation of Micropiles With Different Configuration Settings for Landslide Stabilization Based on Large-Scale Experimental Testing

2021 ◽  
Vol 9 ◽  
Author(s):  
Xueling Liu ◽  
Jinkai Yan ◽  
Bin Tong ◽  
Lei Liu

In this study, a large-scale model test was performed to investigate the effect of the single-row and double-row micropiles on the landside stabilization. For two different testing configuration settings, the bending moment along the micropiles, failure mode, and force condition were captured and compared. It is found that the landslide thrust on piles was distributed in a triangular shape. The piles in the front row carried greater pressure than the piles in the rear row. The resistance of the sliding body behind the pile was distributed in a parabolic shape, and mainly concentrated on the middle of the pile. The piles were destroyed due to the combined shearing and bending impact applied near the slipping surface. The boundary of the failure zone was from the position of two times the pile diameter under the slipping surface to the position of two and a half times the pile diameter above the slipping surface. Under the action of the landslide, each row of piles deformed at the same time. The capability of landslide stabilization for double-row piles was better than that of a single-row pile. The sections of the pile above slide surface were mainly subjected to negative bending moments and were distributed mainly within the pile length range of one-third of the anti-sliding section above the sliding surface. The pile body of the embedded section located in the range of ten times the pile diameter below the sliding surface was subjected to a positive bending moment.

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xueling Liu ◽  
Jinkai Yan ◽  
Lei Liu ◽  
Bing Han

A large-scale model test on the interaction between a micropile group and a landslide was conducted, to investigate the effect of micropiles on the landsides prevention. The bearing mechanism, force condition, and failure mode of a micropile group for reinforcing landslide were analyzed in detail. The results showed that the thrust force over micropiles induced by landslide showed a trapezoidal distribution, with a higher Earth pressure near the sliding surface. The resistance from the sliding body behind the pile behaved in a parabolically trend. Meanwhile, the resistance force from the sliding bed was distributed unevenly along the height direction, with a higher resistance force near the sliding surface behind the pile. When a landslide occurred, micropiles were subjected to an increase in loading and displacement, eventually to the failure state. The load-bearing sections of the micropiles were all subjected to negative bending moments, with larger bending moments within the half length of pile range near the sliding surface. The maximum negative bending moment occurred at the height of seven times the diameter of the pile above the sliding surface. The damage mode along each row of micropiles was almost the same, showing a damage area within the range of three times the diameter of the pile above and below the sliding surface. The failure of micropile induced by landslides was mainly due to a combination effect of bending and shearing near the sliding surface.


2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Kaiyang Wang ◽  
Yanjun Shang

This paper examines the performance of a novel technology, vertical steel floral tube micropiles with double grouting. It is the combination of micropile technology and double grouting technology. A large-scale model tank was applied to impart horizontal bearing capacity, and the slope soil pressure and flexural performance of the micropile were investigated under four experimental conditions. The peak grouting pressure during the double grouting process was defined as the fracturing pressure of the double grouting, and it was positively correlated to the interval time between first grouting and secondary grouting. Compared with traditional grouting, double grouting increased the horizontal bearing capacity of the single micropile with the vertical steel floral tube by 24.42%. The horizontal bearing capacity was also 20.25% higher for the structure with three micropiles, compared with a 3-fold value of horizontal sliding resistance. In the test, the maximum bending moment acting on the pile above the sliding surface was located 2.0–2.5 m away from the pile top, and the largest negative bending moment acting on the pile below the slip surface was located 4.0 m away from the pile top. The ultimate bending moment of the single pile increased by 12.8 kN·m with double grouting, and the bending resistance increased by 96.2%. The experimental results showed that the double grouting technology significantly improved the horizontal bearing capacity of the micropile with the steel floral tube, and the soil reinforcement performance between piles was more pronounced. Also, the shear capacity and the flexural capacity were significantly improved compared with the original technology.


2021 ◽  
Vol 6 (4) ◽  
pp. 100-104
Author(s):  
M. N. Massoud Elsiragy

— Structure’s systems are subjected to additional loads due to earthquakes that may be produces progressive failures. The building illustrates dissimilar categories of failure mechanism for the minor to major earthquake conditions. These structures categorized to the most susceptible type of building has experienced serious hazard or even full failure for the period of seismic activities, therefore their investigation is a complex thing to do. Consequently, this research aims at studying the behaviour of large-scale model of structures constructed with and without brick walls under seismic conditions. The effect of building walls on the performance of the structure during earthquake loading is investigated numerically using PLAXIS 3D software. An eight story building with basement designed on a mat foundation is simulated as three-dimensional model in case of brick walls existing and without brick walls case. The effect of existence such wall building on the stability of foundation soil system is discussed in the form of lateral, horizontal deformation, and foundation acceleration. The studied showed that the reduction of extreme horizontal displacement and bending moment for building foundation with brick walls reached to 43%, and 68% respectively compared to the building without walls. The consideration of wall as filling for super structure significantly reduce the foundation acceleration by as much as 72% of its initial value, which lead to considerable effect of increasing the foundation stability.


2012 ◽  
Vol 226-228 ◽  
pp. 1338-1342
Author(s):  
Shu Feng Wang ◽  
Yong Peng Fu ◽  
Xin Zhao

In recent years, micro-pile has been widely applied to landslide treatment engineering due to its advantages in application and construction, and the engineering effect is very evident. Large-scale physical model test was made for studying failure mode of micro-pile group in landslide, which indicated that numerical magnitudes between the displacement and the stress of the piles are better consistent along the load transfer direction. Concentrated destruction points locate on about three times the pile diameter up and down the slip surface. Failure mode of micro-pile in landslide treatment engineering is: pile of the loaded segment usually breaks for bending moment and shear force, and back of sliding side mainly exposes to the tension role, compared to role of tension of anchored segment in front of the micro-piles and compression behind of the piles.


1988 ◽  
Vol 1 (21) ◽  
pp. 165 ◽  
Author(s):  
John B. Herbich ◽  
Barry Douglas

Several previous investigators have conducted experiments leading to expressions for predicting the transformation of waves passing through closely-spaced pile or large cylinder breakwaters. The present study extends the earlier experiments which used a single row of piles instead of a double row of piles forming a breakwater. The experiments using the double-pile breakwater were performed in the same facility as the experiments conducted on a single-pile breakwater and employed the same method of analysis for a more meaningful comparison. The experiments consisted of allowing waves to pass through a pile array and measuring the incident and transmitted wave heights. The variables were: depth, period, diameter, monochromatic and random waves. The experimental matrix was three water depths, four wave periods, two pile diameters, two gap dimensions between piles and four random wave spectra: Darbyshire, I.T.T.C., Pierson- Moskowitz and JONSWAP, two pile diameters and two gap dimensions between piles. The two-row breakwater had less wave transmission than the single-row breakwater, as expected. For a gap to a pile diameter ratio, or b/D = 0.2 (where b = gap spacing, D — pile diameter), the wave transmission was reduced by 15 percent, as compared with a single-row breakwater; for a gap ratio of b/D - 0.1, the wave transmission was reduced by 5 to 10 percent.


Author(s):  
Jingxia Yue ◽  
Yulong Guo ◽  
Lihua Peng

With the development of the large-scale ship, the hull becomes more and more “soft” and “elastic”. Accurate simulation of ship’s hydro-elastic performance through scaled model test plays an important role in structural safety assessment. This paper presents the detail preparation of a segmented model which is used to investigate the vertical bending moment (VBM) for a 260m TEU container ship. Some innovative concepts were involved in the scaled model design. Firstly, the segmentation of the ship model was based on the hull’s vertical vibration mode for better simulation of the hull’s rigidity distribution. Secondly, the section of the backbone beam was varied by polishing along ship length in order to simulate the varied section modulus of ship hull. Thirdly, new backbone fixed type was carried out by two flange plates for a better wave load transmission. Besides, some useful techniques were provided, including the model making technique, calibration technique, and backbone system technique. It increases the feasibility of test, at a certain extent. Finally, an overview of the ongoing large scale model test plan and its future development directions is prospected.


Author(s):  
Paul A. Denman ◽  
Ashley G. Barker ◽  
Charith W. Jayatunga ◽  
James J. McGuirk

Pressure to reduce available cooling air in modern combustors has driven recent interest in cooling technology based on double-skinned combustor liners, i.e. tiles containing multiple pin-type pedestals to enhance heat transfer. The design of such systems is, however, hampered by the multiplicity of parameters needing optimisation: feedhole configuration, pedestal configuration, tile configuration (e.g. tile overlap). Much experimental testing is currently needed. In addition, the simulation of flow and heat transfer in cooling tile geometries using RANS-based CFD is made particularly difficult by the impossibility of resolving every individual pin in the pedestal matrix whilst retaining an overall CFD problem of reasonable size. The present paper describes a mixture of experimental and computational work undertaken to explore cooling tile flows. On the experimental side, a large-scale Perspex aerodynamic rig of a cooling tile was constructed. Measurements at representative Reynolds numbers were possible and delivered information on discharge coefficients, pressure drops and flow splits for various tile configurations. The same tile geometries were subsequently modeled using a RANS-based CFD approach. The novelty in these simulations was the use of a ‘sub-grid-scale’ model for the pedestal flow and heat transfer. This approach has previously been used in combustor heatshield predictions; it is demonstrated in the present work how it may also be applied to cooling tiles.


2013 ◽  
Vol 14 (2) ◽  
Author(s):  
Noor Fachrizal

Biomass such as agriculture waste and urban waste are enormous potency as energy resources instead of enviromental problem. organic waste can be converted into energy in the form of liquid fuel, solid, and syngas by using of pyrolysis technique. Pyrolysis process can yield higher liquid form when the process can be drifted into fast and flash response. It can be solved by using microwave heating method. This research is started from developing an experimentation laboratory apparatus of microwave-assisted pyrolysis of biomass energy conversion system, and conducting preliminary experiments for gaining the proof that this method can be established for driving the process properly and safely. Modifying commercial oven into laboratory apparatus has been done, it works safely, and initial experiments have been carried out, process yields bio-oil and charcoal shortly, several parameters are achieved. Some further experiments are still needed for more detail parameters. Theresults may be used to design small-scale continuous model of productionsystem, which then can be developed into large-scale model that applicable for comercial use.


Sign in / Sign up

Export Citation Format

Share Document