scholarly journals Origin and Pathways of Dissolved Organic Carbon in a Small Catchment in the Lena River Delta

2022 ◽  
Vol 9 ◽  
Author(s):  
Lydia Stolpmann ◽  
Gesine Mollenhauer ◽  
Anne Morgenstern ◽  
Jens S. Hammes ◽  
Julia Boike ◽  
...  

The Arctic is rich in aquatic systems and experiences rapid warming due to climate change. The accelerated warming causes permafrost thaw and the mobilization of organic carbon. When dissolved organic carbon is mobilized, this DOC can be transported to aquatic systems and degraded in the water bodies and further downstream. Here, we analyze the influence of different landscape components on DOC concentrations and export in a small (6.45 km2) stream catchment in the Lena River Delta. The catchment includes lakes and ponds, with the flow path from Pleistocene yedoma deposits across Holocene non-yedoma deposits to the river outlet. In addition to DOC concentrations, we use radiocarbon dating of DOC as well as stable oxygen and hydrogen isotopes (δ18O and δD) to assess the origin of DOC. We find significantly higher DOC concentrations in the Pleistocene yedoma area of the catchment compared to the Holocene non-yedoma area with medians of 5 and 4.5 mg L−1 (p < 0.05), respectively. When yedoma thaw streams with high DOC concentration reach a large yedoma thermokarst lake, we observe an abrupt decrease in DOC concentration, which we attribute to dilution and lake processes such as mineralization. The DOC ages in the large thermokarst lake (between 3,428 and 3,637 14C y BP) can be attributed to a mixing of mobilized old yedoma and Holocene carbon. Further downstream after the large thermokarst lake, we find progressively younger DOC ages in the stream water to its mouth, paired with decreasing DOC concentrations. This process could result from dilution with leaching water from Holocene deposits and/or emission of ancient yedoma carbon to the atmosphere. Our study shows that thermokarst lakes and ponds may act as DOC filters, predominantly by diluting incoming waters of higher DOC concentrations or by re-mineralizing DOC to CO2 and CH4. Nevertheless, our results also confirm that the small catchment still contributes DOC on the order of 1.2 kg km−2 per day from a permafrost landscape with ice-rich yedoma deposits to the Lena River.

2013 ◽  
Vol 10 (6) ◽  
pp. 3507-3524 ◽  
Author(s):  
S. Zubrzycki ◽  
L. Kutzbach ◽  
G. Grosse ◽  
A. Desyatkin ◽  
E.-M. Pfeiffer

Abstract. The Lena River Delta, which is the largest delta in the Arctic, extends over an area of 32 000 km2 and likely holds more than half of the entire soil organic carbon (SOC) mass stored in the seven major deltas in the northern permafrost regions. The geomorphic units of the Lena River Delta which were formed by true deltaic sedimentation processes are a Holocene river terrace and the active floodplains. Their mean SOC stocks for the upper 1 m of soils were estimated at 29 kg m−2 ± 10 kg m−2 and at 14 kg m−2 ± 7 kg m−2, respectively. For the depth of 1 m, the total SOC pool of the Holocene river terrace was estimated at 121 Tg ± 43 Tg, and the SOC pool of the active floodplains was estimated at 120 Tg ± 66 Tg. The mass of SOC stored within the observed seasonally thawed active layer was estimated at about 127 Tg assuming an average maximum active layer depth of 50 cm. The SOC mass which is stored in the perennially frozen ground at the increment 50–100 cm soil depth, which is currently excluded from intense biogeochemical exchange with the atmosphere, was estimated at 113 Tg. The mean nitrogen (N) stocks for the upper 1 m of soils were estimated at 1.2 kg m−2 ± 0.4 kg m−2 for the Holocene river terrace and at 0.9 kg m−2 ± 0.4 kg m−2 for the active floodplain levels, respectively. For the depth of 1 m, the total N pool of the river terrace was estimated at 4.8 Tg ± 1.5 Tg, and the total N pool of the floodplains was estimated at 7.7 Tg ± 3.6 Tg. Considering the projections for deepening of the seasonally thawed active layer up to 120 cm in the Lena River Delta region within the 21st century, these large carbon and nitrogen stocks could become increasingly available for decomposition and mineralization processes.


Separations ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 87
Author(s):  
Vyacheslav Polyakov ◽  
Evgeny Abakumov

In the Arctic zone, where up to 1024 × 1013 kg of organic matter is stored in permafrost-affected soils, soil organic matter consists of about 50% humic substances. Based on the analysis of the molecular composition of humic acids, we assessed the processes of accumulation of the key structural fragments, their transformations and the stabilization rates of carbon pools in soils in general. The landscape of the Lena River delta is the largest storage of stabilized organic matter in the Arctic. There is active accumulation and deposition of a significant amount of soil organic carbon from terrestrial ecosystems in a permafrost state. Under ongoing climate change, carbon emission fluxes into the atmosphere are estimated to be higher than the sequestration and storing of carbon compounds. Thus, investigation of soil organic matter stabilization mechanisms and rates is quite an urgent topic regarding polar soils. For study of molecular elemental composition, humic acids were separated from the soils of the Lena River delta. Key structural fragments of humic matter were identified and quantified by CP/MAS 13C NMR spectroscopy: carboxyl (–COOR); carbonyl (–C=O); CH3–; CH2–; CH-aliphatic; –C-OR alcohols, esters and carbohydrates; and the phenolic (Ar-OH), quinone (Ar = O) and aromatic (Ar–) groups as benchmark Cryosols of the Lena delta river terrestrial ecosystem. Under the conditions of thermodynamic evolutionary selection, during the change between the dry and wet seasons, up to 41% of aromatic and carboxyl fragments accumulated in humic acids. Data obtained showed that three main groups of carbon played the most important role in soil organic matter stabilization, namely C, H-alkyls ((CH2)n/CH/C and CH3), aromatic compounds (C-C/C-H, C-O) and an OCH group (OCH/OCq). The variations of these carbon species’ content in separated humics, with special reference to soil–permafrost organic profiles’ recalcitrance in the current environment, is discussed.


2018 ◽  
Vol 10 (9) ◽  
pp. 1360 ◽  
Author(s):  
Tazio Strozzi ◽  
Sofia Antonova ◽  
Frank Günther ◽  
Eva Mätzler ◽  
Gonçalo Vieira ◽  
...  

Low-land permafrost areas are subject to intense freeze-thaw cycles and characterized by remarkable surface displacement. We used Sentinel-1 SAR interferometry (InSAR) in order to analyse the summer surface displacement over four spots in the Arctic and Antarctica since 2015. Choosing floodplain or outcrop areas as the reference for the InSAR relative deformation measurements, we found maximum subsidence of about 3 to 10 cm during the thawing season with generally high spatial variability. Sentinel-1 time-series of interferograms with 6–12 day time intervals highlight that subsidence is often occurring rather quickly within roughly one month in early summer. Intercomparison of summer subsidence from Sentinel-1 in 2017 with TerraSAR-X in 2013 over part of the Lena River Delta (Russia) shows a high spatial agreement between both SAR systems. A comparison with in-situ measurements for the summer of 2014 over the Lena River Delta indicates a pronounced downward movement of several centimetres in both cases but does not reveal a spatial correspondence between InSAR and local in-situ measurements. For the reconstruction of longer time-series of deformation, yearly Sentinel-1 interferograms from the end of the summer were considered. However, in order to infer an effective subsidence of the surface through melting of excess ice layers over multi-annual scales with Sentinel-1, a longer observation time period is necessary.


2014 ◽  
Vol 11 (3) ◽  
pp. 4085-4122 ◽  
Author(s):  
D. Bolshiyanov ◽  
A. Makarov ◽  
L. Savelieva

Abstract. The Lena River Delta, the largest delta of the Arctic Ocean, differs from other deltas because it consists mainly of organomineral sediments, commonly called peat, that contain a huge organic carbon reservoir. The analysis of Delta sediment radiocarbon ages showed that they could not have formed as peat during floodplain bogging, but accumulated when Laptev Sea water level was high and green mosses and sedges grew and were deposited on the surface of flooded marshes. The Lena River Delta formed as organomineral masses and layered sediments accumulated during transgressive phases when sea level rose. In regressive phases, the islands composed of these sediments and other, more ancient islands were eroded. Each new sea transgression led to further accumulation of layered sediments. As a result of alternating transgressive and regressive phases the first alluvial-marine terrace formed, consisting of geological bodies of different ages. Determining the formation age of different areas of the first terrace and other marine terraces on the coast allowed the periods of increasing (8–6 Ka, 4.5–4 Ka, 2.5–1.5 Ka, 0.4–0.2 Ka) and decreasing (5 Ka, 3 Ka, 0.5 Ka) Laptev Sea levels to be distinguished in the Lena Delta area.


2019 ◽  
pp. 62-77
Author(s):  
L. P. Imaeva ◽  
G. S. Gusev ◽  
V. S. Imaev

This paper presents seismogeodynamic analysis of modern structures located in the Lena river delta. These structures are key elements in the tectonic evolution of the shelf–continent transition zone in the Arctic segment of the boundary between the Eurasian and North American lithospheric plates. The geological structure of the Lena river delta is predetermined by the junction of the ancient Siberian platform and the Mesozoic Laptev Sea plate. These two large geoblocks of the crust, which differ in age, are separated by a fragment of the Kharaulakh segment of the Verkhoyansk fold system. In our study aimed to reveal regularities in seismotectonic destruction of the crust, we analyzed the geological and geophysical data on the crustal structure, active faults, modern structural plan, dynamic characteristics of the modern relief, and hydrological features characterizing of the flow redistribution in the Lena riverbed. A system of active faults identified in the Lena river delta shows a contrasting kinematic plan of the junction zone of the main geostructures. According to the analysis results, shear faulting is a dominant factor of impact on the morphologic features and seismogeodynamic activation of the modern structures. A regional right-lateral strike-slip fault of the sublatitudinal strike is traced as a major structural boundary that cuts the Lena river delta into several geodynamic segments. Seismotectonic destruction of the crust in the segments differs in types (transpression, transtension and compression). The above-mentioned fault is not only the main element of the kinematic plan of the newest structures in the Lena river delta – it controls the general structural pattern and seismotectonic parameters of active fault zones in the entire northern sector of the Verkhoyansk marginal suture. The seismogeodynamic analysis results obtained in our study provide a reliable basis for estimating potential seismic hazard of the modern structures in the Lena river delta and updating the available seismic zoning maps of the shelf–continent transition zone in the Arctic segment of the boundary between the Eurasian and North American lithospheric plates.


2012 ◽  
Vol 9 (12) ◽  
pp. 17263-17311 ◽  
Author(s):  
S. Zubrzycki ◽  
L. Kutzbach ◽  
G. Grosse ◽  
A. Desyatkin ◽  
E.-M. Pfeiffer

Abstract. The Lena River Delta, which is the largest delta in the Arctic, extends over an area of 32 000 km2 and likely holds more than half of the entire soil organic carbon mass stored in the seven major deltas in the northern permafrost regions. The geomorphic units of the Lena River Delta which were formed by true deltaic sedimentation processes are a Holocene river terrace and the active floodplains. Their mean soil organic carbon stocks for the upper 1 m of soils were estimated at 29 kg m−2 ± 10 kg m−2 and at 14 kg m−2 ± 7 kg m−2, respectively. For the depth of 1 m, the total soil organic carbon pool of the Holocene river terrace was estimated at 121 Tg ± 43 Tg, and the soil organic carbon pool of the active floodplains was estimated at 120 Tg ± 66 Tg. The mass of soil organic carbon stored within the observed seasonally thawed active layer was estimated at about 127 Tg assuming an average maximum active layer depth of 50 cm. The soil organic carbon mass which is stored in the perennially frozen ground below 50 cm soil depth, which is excluded from intense biogeochemical exchange with the atmosphere, was estimated at 113 Tg. The mean nitrogen (N) stocks for the upper 1 m of soils were estimated at 1.2 kg m−2 ± 0.4 kg m−2 for the Holocene river terrace and at 0.9 kg m−2 ± 0.4 kg m−2 for the active floodplain levels, respectively. For the depth of 1 m, the total N pool of the river terrace was estimated at 4.8 Tg ± 1.5 Tg, and the total N pool of the floodplains was estimated at 7.7 Tg ± 3.6 Tg. Considering the projections for deepening of the seasonally thawed active layer up to 120 cm in the Lena River Delta region within the 21st century, these large carbon and nitrogen stocks could become increasingly available for decomposition and mineralization processes.


2020 ◽  
Vol 10 ◽  
Author(s):  
Vyacheslav Polyakov ◽  
Evgeny Abakumov

The Arctic ecosystem has a huge reservoir of soil organic carbon stored in permafrost-affected soils and biosediments. During the short vegetation season, humification and mineralization processes in the active soil layer result in the formation of specific soil organic substances – humic substances. Humic acids are high molecular, specific, thermodynamically stable macromolecules. The study was conducted in the Lena River Delta, the largest river delta located in the Arctic. Cryosol-type soils on alluvial deposits of the river form an area of about 45 thousand km<sup>2</sup> under permafrost conditions. The vegetation cover is represented by moss-lichen communities with the presence of <em>Salix glauca</em> in the flooded areas, as well as <em>Betula nana</em> in the areas not subject to flooding. The paper presents the elemental and molecular composition of humic acids isolated from soils, integral indicators of humification (stabilization) of organic matter in the soils of the Lena River Delta. The study was conducted using the <sup>13</sup>C (CP/MAS) NMR spectroscopy method. In the work, it was revealed that up to 33% of aromatic and up to 15% COOR fragments are accumulated in humic acids. The AR/AL ratio ranged from 0.69 to 0.89. The studied soils are variants of modern soil formation (not subjected to alluvial processes) and soil-like bodies that melted from the IC of the river delta. A relatively high degree of condensation of humic acid macromolecules in comparison with other polar regions of the Arctic and Antarctic was noted.


2015 ◽  
Vol 12 (23) ◽  
pp. 6915-6930 ◽  
Author(s):  
J. E. Vonk ◽  
S. E. Tank ◽  
P. J. Mann ◽  
R. G. M. Spencer ◽  
C. C. Treat ◽  
...  

Abstract. As Arctic regions warm and frozen soils thaw, the large organic carbon pool stored in permafrost becomes increasingly vulnerable to decomposition or transport. The transfer of newly mobilized carbon to the atmosphere and its potential influence upon climate change will largely depend on the degradability of carbon delivered to aquatic ecosystems. Dissolved organic carbon (DOC) is a key regulator of aquatic metabolism, yet knowledge of the mechanistic controls on DOC biodegradability is currently poor due to a scarcity of long-term data sets, limited spatial coverage of available data, and methodological diversity. Here, we performed parallel biodegradable DOC (BDOC) experiments at six Arctic sites (16 experiments) using a standardized incubation protocol to examine the effect of methodological differences commonly used in the literature. We also synthesized results from 14 aquatic and soil leachate BDOC studies from across the circum-arctic permafrost region to examine pan-arctic trends in BDOC. An increasing extent of permafrost across the landscape resulted in higher DOC losses in both soil and aquatic systems. We hypothesize that the unique composition of (yedoma) permafrost-derived DOC combined with limited prior microbial processing due to low soil temperature and relatively short flow path lengths and transport times, contributed to a higher overall terrestrial and freshwater DOC loss. Additionally, we found that the fraction of BDOC decreased moving down the fluvial network in continuous permafrost regions, i.e. from streams to large rivers, suggesting that highly biodegradable DOC is lost in headwater streams. We also observed a seasonal (January–December) decrease in BDOC in large streams and rivers, but saw no apparent change in smaller streams or soil leachates. We attribute this seasonal change to a combination of factors including shifts in carbon source, changing DOC residence time related to increasing thaw-depth, increasing water temperatures later in the summer, as well as decreasing hydrologic connectivity between soils and surface water as the thaw season progresses. Our results suggest that future climate warming-induced shifts of continuous permafrost into discontinuous permafrost regions could affect the degradation potential of thaw-released DOC, the amount of BDOC, as well as its variability throughout the Arctic summer. We lastly recommend a standardized BDOC protocol to facilitate the comparison of future work and improve our knowledge of processing and transport of DOC in a changing Arctic.


2021 ◽  
Vol 6 (3) ◽  
pp. 15-28
Author(s):  
S. S. Barinova ◽  
V. A. Gabyshev ◽  
A. P. Ivanova ◽  
O. I. Gabysheva

The Lena River in the Laptev Sea forms a vast delta, one of the largest in the world. The Ust-Lensky State Nature Reserve saves biodiversity on the Lena Delta territory beyond the Arctic Circle, in the zone of continuous permafrost. In recent years, large-scale plans for the development of extractive industries are implemented in this Russian Arctic sector. In this regard, the study of biodiversity and bioindication properties of aquatic organisms in the Lena River estuary area is becoming more and more relevant. This study aims to identify the species composition of microalgae in lotic and lentic water bodies of the Lena River Delta and use their indicator property for water salinity. It was a trace indicator of species distribution over the delta and their dynamics along the delta main watercourses to assess the impact of river waters on the Laptev Sea coastal areas. For this, all previously published materials on algae and chemical composition of the region waters as well as data obtained in recent years for the waters of the lower Lena reach were involved. In total, 700 species considered to 10 phyla were analyzed: Cyanobacteria (83), Euglenozoa (13), Ochrophyta (Chrysophyta, Xanthophyta) (41), Eustigmatophyta (4), Bacillariophyta (297), Miozoa (20), Cryptophyta (3), Rhodophyta (1), Chlorophyta (125), and Charophyta (111). The available materials of the field and reference observations were analyzed using several statistical methods. The study results indicate that hydrological conditions are the main factor regulating the spatial structure of the species composition of the microalgae communities in the Lena River Delta. The distribution of groups of salinity indicators across flowing water bodies reflects the effect of water salinity, and this allows suggesting possible sources of this effect. The mechanism of tracking the distribution of environmental indicators itself is a sensitive method, that reveals even their subtle changes in them; therefore, as an integral method, it can be helpful for further monitoring.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shinya Takano ◽  
Youhei Yamashita ◽  
Shunsuke Tei ◽  
Maochang Liang ◽  
Ryo Shingubara ◽  
...  

Arctic tundra wetlands may be an important source of dissolved organic carbon (DOC) in Arctic rivers and the Arctic Ocean under global warming. We investigated stable water isotopes and DOC concentration in wetlands, tributaries, and the mainstream at the lower reaches of the Indigirka River in northeastern Siberia during the summers of 2010–2014 to assess the complex hydrology and role of wetlands as sources of riverine DOC. The wetlands had higher values of δ18O and DOC concentration than the tributaries and mainstream of the Indigirka River. A relationship between the two parameters was observed in the wetlands, tributaries, and mainstream, suggesting the wetlands can be a source of DOC for the mainstream through the tributaries. The combined temporal variations in riverine δ18O and DOC concentration indicate the mainstream water flowed into the tributaries during relatively high river-level periods in summer, whereas high DOC water in the downstream wetlands could be discharged to the mainstream through the tributaries during the low river-level periods. A minor fraction (7–13%) of riverine and wetland DOC was degraded during 40 days of dark incubation. Overall, the downstream wetlands potentially provide relatively less biodegradable DOC to the Arctic river and costal ecosystem during the low river-level periods—from late summer to autumn.


Sign in / Sign up

Export Citation Format

Share Document