scholarly journals Deciphering the Late Paleozoic–Cenozoic Tectonic History of the Inner Central Andes Forearc: An Update From the Salar de Punta Negra Basin of Northern Chile

2022 ◽  
Vol 9 ◽  
Author(s):  
Fernando Martínez ◽  
Mauricio Parra ◽  
Rodrigo Gonzalez ◽  
Cristopher López ◽  
Patiño Ana ◽  
...  

We integrated new and existing geological, geochronological, thermochronological, and two-dimensional (2D) seismic data from the Salar de Punta Negra Basin to define the Late Paleozoic–Cenozoic tectonic evolution of the inner Andean forearc of northern Chile more precisely. Our results indicate that this region experienced early Late Paleozoic–Mesozoic crustal extension, creating several basement half-graben structures bounded by east- and west-dipping master faults. These extensional basins were filled by Upper Permian to Jurassic volcanic and sedimentary (continental and marine) syn-rift deposits. The genesis of these structures is related to the early breakup of the western Gondwana continent and the development of the large Tarapacá Basin in northern Chile and southern Perú. Subsequently, Late Cretaceous to Paleocene contraction occurred, which led to the tectonic inversion of the pre-existing rift system and the uplift of the Paleozoic–Mesozoic syn-rift deposits. Seismic data show that Upper Cretaceous and Paleocene synorogenic deposits accumulated along and over inversion anticlines, recording the initial contraction and marking the change from an extensional to a contractional tectonic setting. During the final episodes of basin inversion, crustal shortening was accommodated by the Eocene to recent basement reverse faulting accompanied by the rapid exhumation of basement pre-rift blocks, which served as the principal sources for the sediments that filled the pre-Andean basins during the Late Cenozoic. Finally, the exhumed basement pre-rift blocks and the reverse faults compartmentalized the contractional intermontane basins, which constitute the main low topographic relief of the inner forearc of northern Chile.

2020 ◽  
Author(s):  
Torsten Hundebøl Hansen ◽  
Ole Rønø Clausen ◽  
Katrine Juul Andresen

Abstract. Using 3D reflection-seismic data constrained by wells, we address the kinematic connections between Permian Zechstein evaporites, basin-inversion structures in the sedimentary units above, and reactivated structures in the sub-salt basement in the Danish Central Graben. The Danish Central Graben is part of the failed North Sea rift system. Where present, mobile Zechstein evaporites have played a significant role in its structural development since the Triassic, while tectonic shortening caused mild inversion in the Late Cretaceous and Paleogene. Shortening was accommodated mainly by reverse reactivation of older normal faults (i.e. fault inversion) along with folding and uplift of their hangingwalls. Within the study area, rifting generated two major W-SW-dipping basement faults with several kilometres of normal offset. The larger Coffee Soil Fault delineate the eastern boundary of the rift basins. Within its hangingwall, a broad zone is characterised by inversion-related uplift and deformation. Along the fault, buttressed growth folds in the immediate hangingwall indicate thick-skinned inversion, i.e. coupled deformation between the basement and cover units. The opposite margin of the inverted zones follows the westwards pinch-out of the Zechstein salt. Here, thin-skinned folds and faults sole out into Zechstein units on the half-graben dip slopes. The most pronounced inversion occurred directly above and in extension of salt ridges and –rollers that localized shortening in the cover above. With no apparent links to underlying basement faults, we balance thin-skinned shortening to the sub-salt basement via a triangle-zone concept. This implies that thin Zechstein units on the half-graben dip slopes formed thrust detachments during inversion, and that basement shortening was mainly accommodated by reactivation of the major rift faults further east. Ductile deformation at seismic scales accounts for thin-skinned shortening of the cover units where such a detachment did not develop. We discuss the related mechanisms. The documented structural styles are similar to those found in other inverted basins in the region, and to those produced from physical-model experiments. Our results indicate that Zechstein units imposed a strong control on structural style and kinematics during basin inversion in large parts of the Danish Central Graben. We emphasize that even thin evaporite units may act as detachments during tectonic extension and contraction if favourably orientated. Salt ridges and diapiric structures can localise shortening and generate thin-skinned faults and folds in the cover above. In mildly inverted rifts, extensive mobile salt may mask the effects of basin inversion if shortening is accommodated by salt structures without the formation of clearly defined inversion structures at the surface or significant uplift.


2021 ◽  
Author(s):  
Frank Chanier ◽  
Fabien Caroir ◽  
Virginie Gaullier ◽  
Julien Bailleul ◽  
Agnès Maillard ◽  
...  

<p>The Sperchios - North Evia Gulf rift system is WNW-ESE directed and participates to the widespread crustal extension induced by the respectively southward and south-westward Nubian and Ionian slabs retreat, and by the extrusion of the Anatolia-Aegean microplate. This crustal stretching, active at least since the early Pliocene, is partly coeval with the North Anatolian Fault (NAF) propagation through the Marmara Sea and the North Aegean domain. At the western termination of the NAF, in the studied area, the domain is widely heterogeneous as it has been previously deformed by successive tectonic events during Hellenic orogeny, from Middle Jurassic to Paleogene times. The low elevation of the Internal Zones in respect to the External Zones of Hellenides suggest that the Frontal Thrust of the Internal Zones, that crosscut the Sperchios Rift, plays a major role in the distribution of rift systems within that area. The Sperchios-North Evia Gulf rift developed over the internal Zones and was driven by at least two major extensional episodes. The first one is characterised by a NNE-SSW extensional direction while the second, still active, is NNW-SSE to N-S. This change in direction can be associated to a modification of the tectonic setting within the Aegean Plate or can be a consequence of clockwise rotation of the whole western Aegean domain.</p><p>The WATER survey (Western Aegean Tectonic Evolution and Reactivations), conducted in July-August 2017 onboard the R/V “Téthys II”, allowed to acquire more than 1300 km of very high resolution seismic reflection profiles (Sparker 50-300 Joules) around North Evia Island (North Evia Gulf, Oreoi Channel and Skopelos Basin). The new dataset issued from this survey illustrates structural patterns that can be correlated with onland fault systems.</p><p>The interpretation of this new seismic data allowed us to precise the main trends of the North Evia Gulf rift deformation. For example, the rift bordering faults show rapid longitudinal changes in terms of offsets and of their main tilting polarity. Our structural analysis results, together with the kinematic analysis of onshore fault zones, give detailed constraints on the rift structural organisation as well as on the relative chronology of tectonic episodes.</p><p>Furthermore, these results provide important data in order to discuss the relations of some major rift structures with other crustal structures inherited from earlier deformation in the Hellenides, and also to consider the deformation patterns in the south-western prolongation of the North Anatolian Fault system during Pliocene to Quaternary times. We discuss the relations between various generations of crustal-scale structures and propose that the variations in the rift asymmetry were triggered, during its initial development, by the presence of older crustal heterogeneities.</p>


2020 ◽  
Author(s):  
Łukasz Grzybowski ◽  
Piotr Krzywiec

<p>The Goleniów salt structure (GSS) is located in the NW part of the Polish Basin which belongs to a system of Permian-Mesozoic epicontinental sedimentary basins of the Western and Central Europe. Its axial part (so called Mid Polish Trough – MPT) was filled with several kilometres of sediments, mainly siliciclastic and carbonates but also with Zechstein (Upper Permian) evaporites. The Polish Basin was fully inverted in Late Cretaceous-Paleogene. The presence of thick layer of evaporites led formation of diverse salt structures. The study area is located within the SW flank of the MPT, characterized by presence of numerous salt and salt-related structures. One of them is NNW-SSE oriented Goleniów structure which extends over 25 km with the salt diapir (salt wall) in its NNW part. Interpretation of the dense array of 2D seismic reflection profiles allowed for the construction of the 3D model of the GSS and assess its spatial evolution including significant role of delamination of the supra-salt Mesozoic sedimentary cover during both extension (basin subsidence) as well as compression (basin inversion).</p><p>NNW part of the Goleniów structure is formed by a well-developed salt diapir (salt wall). Its evolution started in Late Triassic when regional extension triggered formation of the asymmetric reactive diapir. After Late Triassic-Early Jurassic active piercement, diapir continued its growth as a passive diapir due to a regional extensional tectonic regime. In Middle and Late Jurassic, insufficient amount of salt in the source layer led to diapir burial. Further extension caused diapir to fall. This resulted in Early Cretaceous localised extension within the crestal part of the diapir and formation of a half-graben filled with Lower Cretaceous sediments of increased thickness. The Goleniów structure was significantly re-shaped during Late Cretaceous inversion of the Polish Basin. GSS was rejuvenated and started to growth which led to roof uplift and its partial erosion. This progressive compression-related Late Cretaceous growth is very well documented by growth strata preserved above the diapir. Finally, after completion of inversion of the Polish Basin, salt crest reached in Cenozoic groundwater active circulation zone which in turn caused its dissolution and eventually development of the dissolution-collapse trough filled with Cenozoic sediments with increased thickness.</p><p>The style of the deformation alongstrike changes toward the SSE where, due to smaller amount of evaporites salt diapir did not form and was replaced by a complex zone of thin-skinned deformation detached within Zechstein evaporites. First, thin-skinned half-graben was formed during Late Triassic-Early Jurassic extensional phase. It was then compressionally reactivated during basin inversion and this led to enhanced delamination and then thrusting within the Upper Triassic (Keuper) section. Complex backthrusting and local wedging was related to formation of a secondary detachment level within Keuper evaporites and resulted in formation of "fish tail" structure. Backthrusting was associated with substantial folding of hangingwall strata.</p>


2019 ◽  
Author(s):  
Ian W.D. Dalziel ◽  
◽  
Robert Smalley ◽  
Lawrence A. Lawver ◽  
Demian Gomez ◽  
...  

1999 ◽  
Vol 73 (2) ◽  
pp. 164-175 ◽  
Author(s):  
David K. Brezinski

Based on range data and generic composition, four stages of evolution are recognized for late Paleozoic trilobites of the contiguous United States. Stage 1 occurs in the Lower Mississippian (Kinderhookian-Osagean) and is characterized by a generically diverse association of short-ranging, stenotopic species that are strongly provincial. Stage 2 species are present in the Upper Mississippian and consist of a single, eurytopic, pandemic genus, Paladin. Species of Stage 2 are much longer-ranging than those of Stage 1, and some species may have persisted for as long as 12 m.y. Stage 3 is present within Pennsylvanian and Lower Permian strata and consists initially of the eurytopic, endemic genera Sevillia and Ameura as well as the pandemic genus Ditomopyge. During the middle Pennsylvanian the very long-ranging species Ameura missouriensis and Ditomopyge scitula survived for more than 20 m.y. During the late Pennsylvanian and early Permian, a number of pandemic genera appear to have immigrated into what is now North America. Stage 4 is restricted to the Upper Permian (late Leonardian-Guadalupian) strata and is characterized by short-ranging, stenotopic, provincial genera.The main causal factor controlling the four-stage evolution of late Paleozoic trilobites of the United States is interpreted to be eustacy. Whereas Stage 1 represents an adaptive radiation developed during the Lower Mississippian inundation of North America by the Kaskaskia Sequence, Stage 2 is present in strata deposited during the regression of the Kaskaskia sea. Stage 3 was formed during the transgression and stillstand of the Absaroka Sequence and, although initially endemic, Stage 3 faunas are strongly pandemic in the end when oceanic circulation patterns were at a maximum. A mid-Leonardian sea-level drop caused the extinction of Stage 3 fauna. Sea-level rise near the end of the Leonardian and into the Guadalupian created an adaptive radiation of stentopic species of Stage 4 that quickly became extinct with the latest Permian regression.


2021 ◽  
Vol 9 ◽  
Author(s):  
Pablo Granado ◽  
Jonas B. Ruh ◽  
Pablo Santolaria ◽  
Philipp Strauss ◽  
Josep Anton Muñoz

We present a series of 2D thermo-mechanical numerical experiments of thick-skinned crustal extension including a pre-rift salt horizon and subsequent thin-, thick-skinned, or mixed styles of convergence accompanied by surface processes. Extension localization along steep basement faults produces half-graben structures and leads to variations in the original distribution of pre-rift salt. Thick-skinned extension rate and salt rheology control hanging wall accommodation space as well as the locus and timing of minibasin grounding. Upon shortening, extension-related basement steps hinder forward propagation of evolving shallow thrust systems; conversely, if full basin inversion takes place along every individual fault, the regional salt layer is placed back to its pre-extensional configuration, constituting a regionally continuous décollement. Continued shortening and basement involvement deform the shallow fold-thrust structures and locally breaches the shallow décollement. We aim at obtaining a series of structural, stratigraphic and kinematic templates of fold-and-thrust belts involving rift basins with an intervening pre-rift salt horizon. Numerical results are compared to natural cases of salt-related inversion tectonics to better understand their structural evolution.


2018 ◽  
Vol 114 ◽  
pp. 310-319 ◽  
Author(s):  
Fernando Martínez ◽  
Domenico Montanari ◽  
Chiara Del Ventisette ◽  
Marco Bonini ◽  
Giacomo Corti

2021 ◽  
Vol 2 ◽  
pp. 1-14
Author(s):  
Md Nahidul Hasan ◽  
Sally Potter-McIntyre ◽  
Steve Tedesco

The Kizler North Field in northwest Lyon County, Kansas, is a producing field with structures associated with both uplift of the Ancestral Rockies (Pennsylvanian to early Permian) and reactivation of structures along the Proterozoic midcontinent rift system (MRS), which contributed to the current complex and poorly understood play mechanisms. The Lower Paleozoic dolomitic Simpson Group, Viola Limestone, and “Hunton Group” are the reservoir units within the field. These units have significant vuggy porosity, which is excellent for field potential; however, in places, the reservoir is inhibited by high water saturation. The seismic data show that two late-stage wrench fault events reactivated existing faults. The observed wrench faults exhibit secondary P, R’, and R Riedel shears, which likely resulted from Central Kansas uplift-MRS wrenching. The latest stage event breached reservoir caprock units during post-Mississippian to pre-Desmoinesian time and allowed for hydrocarbon migration out of the reservoirs. Future exploration models of the Kizler North and analog fields should be based on four play concepts: 1) four-way closure with wrench-fault-related traps, 2) structural highs in the Simpson Group and Viola Limestone, 3) thick “Hunton Group,” and 4) presence of a wrench fault adjacent to the well location that generates subtle closure but not directly beneath it, which causes migration out of reservoirs. In settings where complex structural styles are overprinted, particular attention should be paid to the timing of events that may cause breaches of seals in some structures but not others. Mapping the precise location and vertical throw of the reactivated wrench faults using high-resolution seismic data can help reduce the drilling risk in analog systems.


Sign in / Sign up

Export Citation Format

Share Document