scholarly journals Carney Triad, Carney-Stratakis Syndrome, 3PAS and Other Tumors Due to SDH Deficiency

2021 ◽  
Vol 12 ◽  
Author(s):  
Georgia Pitsava ◽  
Nikolaos Settas ◽  
Fabio R. Faucz ◽  
Constantine A. Stratakis

Succinate dehydrogenase (SDH) is a key respiratory enzyme that links Krebs cycle and electron transport chain and is comprised of four subunits SDHA, SDHB, SDHC and SDHD. All SDH-deficient tumors are caused by or secondary to loss of SDH activity. As many as half of the familial cases of paragangliomas (PGLs) and pheochromocytomas (PHEOs) are due to mutations of the SDHx subunits. Gastrointestinal stromal tumors (GISTs) associated with SDH deficiency are negative for KIT/PDGFRA mutations and present with distinctive clinical features such as early onset (usually childhood or adolescence) and almost exclusively gastric location. SDH-deficient GISTs may be part of distinct clinical syndromes, Carney-Stratakis syndrome (CSS) or dyad and Carney triad (CT). CSS is also known as the dyad of GIST and PGL; it affects both genders equally and is inherited in an autosomal dominant manner with incomplete penetrance. CT is a very rare disease; PGL, GIST and pulmonary chondromas constitute CT which shows female predilection and may be a mosaic disorder. Even though there is some overlap between CT and CSS, as both are due to SDH deficiency, CSS is caused by inactivating germline mutations in genes encoding for the SDH subunits, while CT is mostly caused by a specific pattern of methylation of the SDHC gene and may be due to germline mosaicism of the responsible genetic defect.

2019 ◽  
Vol 51 (07) ◽  
pp. 437-442 ◽  
Author(s):  
Arushi Khurana ◽  
Lin Mei ◽  
Anthony C. Faber ◽  
Steven C. Smith ◽  
Sosipatros A. Boikos

AbstractCarney-Stratakis Syndrome (CSS) comprises of paragangliomas (PGLs) and gastrointestinal stromal tumors (GISTs). Several of its features overlap with Carney Triad (CT) - PGLs, GISTs, and pulmonary chondromas. CSS has autosomal dominant inheritance, incomplete penetrance, and greater relative frequency of PGL over GISTs. The PGLs in CSS are multicentric and GISTs are multifocal in all the patients, suggesting an inherited susceptibility and associating the two manifestations. In this review, we highlight the clinical, pathological, and molecular characteristics of CSS, along with its diagnostic and therapeutic implications.


1993 ◽  
Vol 69 (02) ◽  
pp. 173-176 ◽  
Author(s):  
Anna M Randi ◽  
Elisabetta Sacchi ◽  
Gian Carlo Castaman ◽  
Francesco Rodeghiero ◽  
Pier Mannuccio Mannucci

SummaryType I von Willebrand disease (vWD) Vicenza is a rare variant with autosomal dominant transmission, characterized by the presence of supranormal von Willebrand factor (vWF) multimers in plasma, similar to those normally found in endothelial cells and megakaryocytes. The patients have very low levels of plasma vWF contrasting with a mild bleeding tendency. The pathophysiology of this subtype is still unknown. The presence of supranormal multimers in the patients’ plasma could be due to a mutation in the vWF molecule which affects post-translational processing, or to a defect in the cells’ processing machinery, independent of the vWF molecule. In order to determne if type I vWD Vicenza is linked to the vWF gene, we studied six polymorphic systems identified within the vWF gene in two apparently unrelated families with type I vWD Vicenza. The results of this study indicate a linkage between vWF gene and the type I vWD Vicenza trait. This strongly suggests that type I vWD Vicenza is due to a mutation in one of the vWF alleles, which results in an abnormal vWF molecule that is processed to a lesser extent than normal vWF.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Joanne M. Hildebrand ◽  
Bernice Lo ◽  
Sara Tomei ◽  
Valentina Mattei ◽  
Samuel N. Young ◽  
...  

AbstractMaturity-onset diabetes of the young, MODY, is an autosomal dominant disease with incomplete penetrance. In a family with multiple generations of diabetes and several early onset diabetic siblings, we found the previously reported P33T PDX1 damaging mutation. Interestingly, this substitution was also present in a healthy sibling. In contrast, a second very rare heterozygous damaging mutation in the necroptosis terminal effector, MLKL, was found exclusively in the diabetic family members. Aberrant cell death by necroptosis is a cause of inflammatory diseases and has been widely implicated in human pathologies, but has not yet been attributed functions in diabetes. Here, we report that the MLKL substitution observed in diabetic patients, G316D, results in diminished phosphorylation by its upstream activator, the RIPK3 kinase, and no capacity to reconstitute necroptosis in two distinct MLKL−/− human cell lines. This MLKL mutation may act as a modifier to the P33T PDX1 mutation, and points to a potential role of impairment of necroptosis in diabetes. Our findings highlight the importance of family studies in unraveling MODY’s incomplete penetrance, and provide further support for the involvement of dysregulated necroptosis in human disease.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Aloka B. Bandara ◽  
Joshua C. Drake ◽  
David A. Brown

Abstract Background Succinate dehydrogenase (Complex II) plays a dual role in respiration by catalyzing the oxidation of succinate to fumarate in the mitochondrial Krebs cycle and transferring electrons from succinate to ubiquinone in the mitochondrial electron transport chain (ETC). Mutations in Complex II are associated with a number of pathologies. SDHD, one of the four subunits of Complex II, serves by anchoring the complex to the inner-membrane and transferring electrons from the complex to ubiquinone. Thus, modeling SDHD dysfunction could be a valuable tool for understanding its importance in metabolism and developing novel therapeutics, however no suitable models exist. Results Via CRISPR/Cas9, we mutated SDHD in HEK293 cells and investigated the in vitro role of SDHD in metabolism. Compared to the parent HEK293, the knockout mutant HEK293ΔSDHD produced significantly less number of cells in culture. The mutant cells predictably had suppressed Complex II-mediated mitochondrial respiration, but also Complex I-mediated respiration. SDHD mutation also adversely affected glycolytic capacity and ATP synthesis. Mutant cells were more apoptotic and susceptible to necrosis. Treatment with the mitochondrial therapeutic idebenone partially improved oxygen consumption and growth of mutant cells. Conclusions Overall, our results suggest that SDHD is vital for growth and metabolism of mammalian cells, and that respiratory and growth defects can be partially restored with treatment of a ubiquinone analog. This is the first report to use CRISPR/Cas9 approach to construct a knockout SDHD cell line and evaluate the efficacy of an established mitochondrial therapeutic candidate to improve bioenergetic capacity.


2017 ◽  
Vol 83 (22) ◽  
Author(s):  
Chuanjuan Lü ◽  
Yongzhen Xia ◽  
Daixi Liu ◽  
Rui Zhao ◽  
Rui Gao ◽  
...  

ABSTRACT Production of sulfide (H2S, HS−, and S2−) by heterotrophic bacteria during aerobic growth is a common phenomenon. Some bacteria with sulfide:quinone oxidoreductase (SQR) and persulfide dioxygenase (PDO) can oxidize self-produced sulfide to sulfite and thiosulfate, but other bacteria without these enzymes release sulfide into the medium, from which H2S can volatilize into the gas phase. Here, we report that Cupriavidus necator H16, with the fccA and fccB genes encoding flavocytochrome c sulfide dehydrogenases (FCSDs), also oxidized self-produced H2S. A mutant in which fccA and fccB were deleted accumulated and released H2S. When fccA and fccB were expressed in Pseudomonas aeruginosa strain Pa3K with deletions of its sqr and pdo genes, the recombinant rapidly oxidized sulfide to sulfane sulfur. When PDO was also cloned into the recombinant, the recombinant with both FCSD and PDO oxidized sulfide to sulfite and thiosulfate. Thus, the proposed pathway is similar to the pathway catalyzed by SQR and PDO, in which FCSD oxidizes sulfide to polysulfide, polysulfide spontaneously reacts with reduced glutathione (GSH) to produce glutathione persulfide (GSSH), and PDO oxidizes GSSH to sulfite, which chemically reacts with polysulfide to produce thiosulfate. About 20.6% of sequenced bacterial genomes contain SQR, and only 3.9% contain FCSD. This is not a surprise, since SQR is more efficient in conserving energy because it passes electrons from sulfide oxidation into the electron transport chain at the quinone level, while FCSD passes electrons to cytochrome c. The transport of electrons from the latter to O2 conserves less energy. FCSDs are grouped into three subgroups, well conserved at the taxonomic level. Thus, our data show the diversity in sulfide oxidation by heterotrophic bacteria. IMPORTANCE Heterotrophic bacteria with SQR and PDO can oxidize self-produced sulfide and do not release H2S into the gas phase. C. necator H16 has FCSD but not SQR, and it does not release H2S. We confirmed that the bacterium used FCSD for the oxidation of self-produced sulfide. The bacterium also oxidized added sulfide. The common presence of SQRs, FCSDs, and PDOs in heterotrophic bacteria suggests the significant role of heterotrophic bacteria in sulfide oxidation, participating in sulfur biogeochemical cycling. Further, FCSDs have been identified in anaerobic photosynthetic bacteria and chemolithotrophic bacteria, but their physiological roles are unknown. We showed that heterotrophic bacteria use FCSDs to oxidize self-produced sulfide and extraneous sulfide, and they may be used for H2S bioremediation.


2017 ◽  
Vol 30 (2) ◽  
pp. 310-314 ◽  
Author(s):  
Julian A. Crespi ◽  
Laura S. Barrientos ◽  
Guillermo Giovambattista

von Willebrand disease (vWD) is the most common inherited coagulopathy in dogs, particularly in Doberman Pinschers. We developed a pyrosequencing-based assay to estimate the frequency of the c.7437G>A mutation associated with vWD type 1 in the Doberman Pinscher population of Buenos Aires, Argentina. We found a 0.41 frequency for the mutated allele, which varied significantly within families (family 1 = 0.43, family 2 = 0.58, unrelated animals = 0.35). The use of a popular founder male carrier of mutant allele A increased vWD incidence within a family and in the general population. The mode of inheritance was confirmed as autosomal dominant with incomplete penetrance. No differences were found between sexes and coat colors. Pyrosequencing was a good complement to clinical and coagulation tests for vWD type 1 diagnosis and a useful alternative for detecting the c.7437G>A mutation.


2011 ◽  
Vol 17 (3) ◽  
pp. 303-313 ◽  
Author(s):  
M. Grazia Cotticelli ◽  
Lynn Rasmussen ◽  
Nicole L. Kushner ◽  
Sara McKellip ◽  
Melinda Ingrum Sosa ◽  
...  

Friedreich ataxia (FRDA) is an autosomal recessive neuro- and cardiodegenerative disorder for which there are no proven effective treatments. FRDA is caused by decreased expression and/or function of the protein frataxin. Frataxin chaperones iron in the mitochondrial matrix for the assembly of iron–sulfur clusters (ISCs), which are prosthetic groups critical for the function of the Krebs cycle and the mitochondrial electron transport chain (ETC). Decreased expression of frataxin or the yeast frataxin orthologue, Yfh1p, is associated with decreased ISC assembly, mitochondrial iron accumulation, and increased oxidative stress, all of which contribute to mitochondrial dysfunction. Using yeast depleted of Yfh1p, a high-throughput screening (HTS) assay was developed in which mitochondrial function was monitored by reduction of the tetrazolium dye WST-1 in a growth medium with a respiration-only carbon source. Of 101 200 compounds screened, 302 were identified that effectively rescue mitochondrial function. To confirm activities in mammalian cells and begin understanding mechanisms of action, secondary screening assays were developed using murine C2C12 cells and yeast mutants lacking specific complexes of the ETC, respectively. The compounds identified in this study have potential relevance for other neurodegenerative disorders associated with mitochondrial dysfunction, such as Parkinson disease.


2020 ◽  
Vol 13 (11) ◽  
pp. 1689-1696
Author(s):  
Sangwoo Moon ◽  
◽  
Namhee Kim ◽  
Jiwoong Lee ◽  
◽  
...  

AIM: To report the first discovery of Ser341Pro myocilin (MYOC) variant in Korea and analyze its clinical characteristics and genetic significance. METHODS: Ten family members from three generations participated in this study and received the thorough ophthalmologic examination. Focused exome sequencing on a proband was performed to confirm the target mutations (MYOC c.1021T>C) in the family members, and the direct sequencing was conducted. Variant was analyzed according to the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) guidelines. RESULTS: A nucleotide change from thymine to cytosine at c.1021T>C was found in eight family members. Three members diagnosed with primary open angle glaucoma (POAG) were characterized by severe clinical presentations, high intraocular pressure, and poor response to medical treatment (100% of the patient required filtering surgery). On variant analysis by ACMG/AMP guidelines, Ser341Pro is not found in normal population. Multiple computational predictive programs support a deleterious effect of Ser341Pro variant (PolyPhen 2, SIFT, Mutation Taster). Ser341Pro could be involved in moderate (PM) and supporting (PP) criteria (PM1, PM2, PP2, PP3). Combining the criteria, Ser341Pro has a combination of 2 moderate (PM1+PM2) and 2 supporting (PP2+PP3) criteria, which is interpreted to “likely pathogenic”. CONCLUSION: The Ser341Pro variant is correlated with severe phenotype of POAG. There are similar clinical aspects to previous studies: autosomal dominant inheritance, incomplete penetrance (62.50% and 66.67%), and proportion of patients requiring trabeculectomy (100% in both study). According to ACMG/AMP guidelines and the previous basic researches, the Ser341Pro variant had a “strong evidence of pathogenicity (PS3)” and then it could be interpreted to “pathogenic (PS3, PM1, PM2, PP2, PP3)”. Additionally, Ser341Pro variant can be reported as “c.1021T>C (p.Ser341Pro), likely pathogenic, POAG, autosomal dominant” according to guideline.


Sign in / Sign up

Export Citation Format

Share Document