scholarly journals Evidences for Red Pigment Concentrating Hormone (RPCH) and Beta-Pigment Dispersing Hormone (β-PDH) Inducing Oocyte Meiotic Maturation in the Chinese Mitten Crab, Eriocheir sinensis

2021 ◽  
Vol 12 ◽  
Author(s):  
Ling-Ling Wei ◽  
Tian-Tian Chen ◽  
Bi-Yun Luo ◽  
Gao-Feng Qiu

Red pigment concentrating hormone (RPCH) and pigment dispersing hormone (PDH) are crustacean neuropeptides involved in broad physiological processes including body color changes, circadian rhythm, and ovarian growth. In this study, the full-length cDNA of RPCH and PDH were identified from the brain of the Chinese mitten crab Eriocheir sinensis. The deduced RPCH and PDH mature peptides shared identical sequence to the adipokinetic hormone/RPCH peptides family and the β-PDH isoforms and were designated as Es-RPCH and Es-β-PDH, respectively. Es-RPCH and Es-β-PDH transcripts were distributed in the brain and eyestalks. The positive signals of Es-RPCH and Es-β-PDH were localized in the neuronal clusters 6, 8, 9, 10, and 17 of the brain as revealed by in situ hybridization. The expression level of Es-RPCH and Es-β-PDH mRNA in nervous tissues were all significantly increased at vitellogenic stage, and then decreased at the final meiotic maturation stage. The administrated with synthesized Es-RPCH peptide results in germinal vesicles shift toward the plasma membrane in vitellogenic oocyte, and significant decrease of the gonad-somatic index (GSI) and mean oocyte diameter as well as the expression of vitellogenin mRNA at 30 days post injection in vivo. Similar results were also found when injection of the Es-β-PDH peptide. In vitro culture demonstrated that Es-RPCH and Es-β-PDH induced germinal vesicle breakdown of the late vitellogenic oocytes. Comparative ovarian transcriptome analysis indicated that some reproduction/meiosis-related genes such as cdc2 kinase, cyclin B, 5-HT-R and retinoid-X receptor were significantly upregulated in response to Es-RPCH and Es-β-PDH treatments. Taken together, these results provided the evidence for the inductive effect of Es-RPCH and Es-β-PDH on the oocyte meiotic maturation in E. sinensis.

2019 ◽  
Vol 20 (7) ◽  
pp. 1736 ◽  
Author(s):  
Li-Juan Yuan ◽  
Chao Peng ◽  
Bi-Hai Liu ◽  
Jiang-Bin Feng ◽  
Gao-Feng Qiu

Luteinizing hormone (LH), a pituitary gonadotropin, coupled with LH receptor (LHR) is essential for the regulation of the gonadal maturation in vertebrates. Although LH homolog has been detected by immunocytochemical analysis, and its possible role in ovarian maturation was revealed in decapod crustacean, so far there is no molecular evidence for the existence of LHR. In this study, we cloned a novel LHR homolog (named EsLHR) from the Chinese mitten crab Eriocheir sinensis. The complete sequence of the EsLHR cDNA was 2775bp, encoding a protein of 924 amino acids, sharing 71% amino acids identity with the ant Zootermopsis nevadensis LHR. EsLHR expression was found to be high in the ovary, while low in testis, gill, brain, and heart, and no expression in the thoracic ganglion, eye stalk, muscle, and hepatopancreas. Quantitative PCR revealed that the expression level of EsLHR mRNA was significantly higher in the ovaries in previtellogenic (Pvt), late vitellogenic (Lvt), and germinal vesicle breakdown (GVBD) stages than that in the vitellogenic (Mvt) and early vitellogenic (Evt) stages (P < 0.05), and, the highest and the lowest expression were in Lvt, and Evt, respectively. The strong signal was mainly localized in the ooplasm of Pvt oocyte as detected by in situ hybridization. The crab GnRH homolog can significantly induce the expression of EsLHR mRNA at 36 hours post injection in vivo (P < 0.01), suggesting that EsLHR may be involved in regulating ovarian development through GnRH signaling pathway in the mitten crab.


Sign in / Sign up

Export Citation Format

Share Document