scholarly journals Distinct Glucocorticoid Receptor Actions in Bone Homeostasis and Bone Diseases

2022 ◽  
Vol 12 ◽  
Author(s):  
Sooyeon Lee ◽  
Benjamin Thilo Krüger ◽  
Anita Ignatius ◽  
Jan Tuckermann

Glucocorticoids (GCs) are steroid hormones that respond to stress and the circadian rhythm. Pharmacological GCs are widely used to treat autoimmune and chronic inflammatory diseases despite their adverse effects on bone after long-term therapy. GCs regulate bone homeostasis in a cell-type specific manner, affecting osteoblasts, osteoclasts, and osteocytes. Endogenous physiological and exogenous/excessive GCs act via nuclear receptors, mainly via the GC receptor (GR). Endogenous GCs have anabolic effects on bone mass regulation, while excessive or exogenous GCs can cause detrimental effects on bone. GC-induced osteoporosis (GIO) is a common adverse effect after GC therapy, which increases the risk of fractures. Exogenous GC treatment impairs osteoblastogenesis, survival of the osteoblasts/osteocytes and prolongs the longevity of osteoclasts. Under normal physiological conditions, endogenous GCs are regulated by the circadian rhythm and circadian genes display oscillatory rhythmicity in bone cells. However, exogenous GCs treatment disturbs the circadian rhythm. Recent evidence suggests that the disturbed circadian rhythm by continuous exogenous GCs treatment can in itself hamper bone integrity. GC signaling is also important for fracture healing and rheumatoid arthritis, where crosstalk among several cell types including macrophages and stromal cells is indispensable. This review summarizes the complexity of GC actions via GR in bone cells at cellular and molecular levels, including the effect on circadian rhythmicity, and outlines new therapeutic possibilities for the treatment of their adverse effects.

2020 ◽  
Vol 27 (6) ◽  
pp. 838-853 ◽  
Author(s):  
Madalina Icriverzi ◽  
Valentina Dinca ◽  
Magdalena Moisei ◽  
Robert W. Evans ◽  
Mihaela Trif ◽  
...  

: Among the multiple properties exhibited by lactoferrin (Lf), its involvement in bone regeneration processes is of great interest at the present time. A series of in vitro and in vivo studies have revealed the ability of Lf to promote survival, proliferation and differentiation of osteoblast cells and to inhibit bone resorption mediated by osteoclasts. Although the mechanism underlying the action of Lf in bone cells is still not fully elucidated, it has been shown that its mode of action leading to the survival of osteoblasts is complemented by its mitogenic effect. Activation of several signalling pathways and gene expression, in an LRPdependent or independent manner, has been identified. Unlike the effects on osteoblasts, the action on osteoclasts is different, with Lf leading to a total arrest of osteoclastogenesis. : Due to the positive effect of Lf on osteoblasts, the potential use of Lf alone or in combination with different biologically active compounds in bone tissue regeneration and the treatment of bone diseases is of great interest. Since the bioavailability of Lf in vivo is poor, a nanotechnology- based strategy to improve the biological properties of Lf was developed. The investigated formulations include incorporation of Lf into collagen membranes, gelatin hydrogel, liposomes, loading onto nanofibers, porous microspheres, or coating onto silica/titan based implants. Lf has also been coupled with other biologically active compounds such as biomimetic hydroxyapatite, in order to improve the efficacy of biomaterials used in the regulation of bone homeostasis. : This review aims to provide an up-to-date review of research on the involvement of Lf in bone growth and healing and on its use as a potential therapeutic factor in bone tissue regeneration.


2007 ◽  
Vol 86 (4) ◽  
pp. 306-319 ◽  
Author(s):  
T.A. Silva ◽  
G.P. Garlet ◽  
S.Y. Fukada ◽  
J.S. Silva ◽  
F.Q. Cunha

The inflammatory oral diseases are characterized by the persistent migration of polymorphonuclear leukocytes, monocytes, lymphocytes, plasma and mast cells, and osteoblasts and osteoclasts. In the last decade, there has been a great interest in the mediators responsible for the selective recruitment and activation of these cell types at inflammatory sites. Of these mediators, the chemokines have received particular attention in recent years. Chemokine messages are decoded by specific receptors that initiate signal transduction events, leading to a multitude of cellular responses, including chemotaxis and activation of inflammatory and bone cells. However, little is known about their role in the pathogenesis of inflammatory oral diseases. The purpose of this review is to summarize the findings regarding the role of chemokines in periapical and periodontal tissue inflammation, and the integration, into experimental models, of the information about the role of chemokines in human diseases.


2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Rinaldo Florencio-Silva ◽  
Gisela Rodrigues da Silva Sasso ◽  
Estela Sasso-Cerri ◽  
Manuel Jesus Simões ◽  
Paulo Sérgio Cerri

Bone tissue is continuously remodeled through the concerted actions of bone cells, which include bone resorption by osteoclasts and bone formation by osteoblasts, whereas osteocytes act as mechanosensors and orchestrators of the bone remodeling process. This process is under the control of local (e.g., growth factors and cytokines) and systemic (e.g., calcitonin and estrogens) factors that all together contribute for bone homeostasis. An imbalance between bone resorption and formation can result in bone diseases including osteoporosis. Recently, it has been recognized that, during bone remodeling, there are an intricate communication among bone cells. For instance, the coupling from bone resorption to bone formation is achieved by interaction between osteoclasts and osteoblasts. Moreover, osteocytes produce factors that influence osteoblast and osteoclast activities, whereas osteocyte apoptosis is followed by osteoclastic bone resorption. The increasing knowledge about the structure and functions of bone cells contributed to a better understanding of bone biology. It has been suggested that there is a complex communication between bone cells and other organs, indicating the dynamic nature of bone tissue. In this review, we discuss the current data about the structure and functions of bone cells and the factors that influence bone remodeling.


2020 ◽  
Vol 21 (17) ◽  
pp. 6377
Author(s):  
Anna-Jasmina Donaubauer ◽  
Lisa Deloch ◽  
Ina Becker ◽  
Rainer Fietkau ◽  
Benjamin Frey ◽  
...  

The bone is a complex organ that is dependent on a tight regulation between bone formation by osteoblasts (OBs) and bone resorption by osteoclasts (OCs). These processes can be influenced by environmental factors such as ionizing radiation (IR). In cancer therapy, IR is applied in high doses, leading to detrimental effects on bone, whereas radiation therapy with low doses of IR is applied for chronic degenerative and inflammatory diseases, with a positive impact especially on bone homeostasis. Moreover, the effects of IR are of particular interest in space travel, as astronauts suffer from bone loss due to space radiation and microgravity. This review summarizes the current state of knowledge on the effects of IR on bone with a special focus on the influence on OCs and OBs, as these cells are essential in bone remodeling. In addition, the influence of IR on the bone microenvironment is discussed. In summary, the effects of IR on bone and bone remodeling cells strongly depend on the applied radiation dose, as differential results are provided from in vivo as well as in vitro studies with varying doses of IR. Furthermore, the isolated effects of IR on a single cell type are difficult to determine, as the bone cells and bone microenvironment are building a tightly regulated network, influencing on one another. Therefore, future research is necessary in order to elucidate the influence of different bone cells on the overall radiation-induced effects on bone.


Blood ◽  
2008 ◽  
Vol 111 (5) ◽  
pp. 2538-2547 ◽  
Author(s):  
Stephen Fitter ◽  
Andrea L. Dewar ◽  
Panagiota Kostakis ◽  
L. Bik To ◽  
Timothy P. Hughes ◽  
...  

Imatinib inhibits tyrosine kinases important in osteoclast (c-Fms) and osteoblast (platelet-derived growth factor receptor [PDGF-R], c-Abl) function, suggesting that long-term therapy may alter bone homeostasis. To investigate this question, we measured the trabecular bone volume (TBV) in iliac crest bone biopsies taken from chronic myeloid leukemia (CML) patients at diagnosis and again after 2 to 4 years of imatinib therapy. Half the patients (8 of 17) showed a substantive increase in TBV (> 2-fold), after imatinib therapy, with the TBV in the posttreatment biopsy typically surpassing the normal upper limit for the patient's age group. Imatinib-treated patients exhibited reduced serum calcium and phosphate levels with hypophosphatemia evident in 53% (9 of 17) of patients. In vitro, imatinib suppressed osteoblast proliferation and stimulated osteogenic gene expression and mineralized-matrix production by inhibiting PDGF receptor function. In PDGF-stimulated cultures, imatinib dose-dependently inhibited activation of Akt and Crk-L. Using pharmacologic inhibitors, inhibition of PI3-kinase/Akt activation promoted mineral formation, suggesting a possible molecular mechanism for the imatinib-mediated increase in TBV in vivo. Further investigation is required to determine whether the increase in TBV associated with imatinib therapy may represent a novel therapeutic avenue for the treatment of diseases that are characterized by generalized bone loss.


Endocrinology ◽  
2011 ◽  
Vol 152 (4) ◽  
pp. 1412-1422 ◽  
Author(s):  
Yun Ma ◽  
Jeffry S. Nyman ◽  
Huan Tao ◽  
Heather H. Moss ◽  
Xiangli Yang ◽  
...  

Abstract The sympathetic nervous system is a physiological regulator of bone homeostasis. Autonomic nerves are indeed present in bone, bone cells express the β2-adrenergic receptors (β2AR), and pharmacological or genetic disruption of sympathetic outflow to bone induces bone gain in rodents. These recent findings implied that conditions that affect β2AR signaling in osteoblasts and/or sympathetic drive to bone may contribute to bone diseases. In this study, we show that dexamethasone stimulates the expression of the β2AR in differentiated primary calvarial osteoblasts, as measured by an increase in Adrβ2 mRNA and β2AR protein level after short-term dexamethasone treatment. Isoproterenol-induced cAMP accumulation and the expression of the β2AR target gene Rankl were also significantly increased after dexamethasone pretreatment, indicating that dexamethasone promotes the responsiveness of differentiated osteoblasts to adrenergic stimulation. These in vitro results led to the hypothesis that glucocorticoid-induced bone loss, provoked by increased endogenous or high-dose exogenous glucocorticoids given for the treatment of inflammatory diseases, might, at least in part, be mediated by increased sensitivity of bone-forming cells to the tonic inhibitory effect of sympathetic nerves on bone formation or their stimulatory effect on bone resorption. Supporting this hypothesis, both pharmacological and genetic β2AR blockade in mice significantly reduced the bone catabolic effect of high-dose prednisolone in vivo. This study emphasizes the importance of sympathetic nerves in the regulation of bone homeostasis and indicates that this neuroskeletal signaling axis can be modulated by hormones or drugs and contribute to enhance pathological bone loss.


2020 ◽  
Vol 27 (7) ◽  
pp. 1151-1169 ◽  
Author(s):  
Yi Zhang ◽  
Guojing Luo ◽  
Xijie Yu

Background: Intercellular crosstalk among osteoblast, osteoclast, osteocyte and chondrocyte is involved in the precise control of bone homeostasis. Disruption of this cellular and molecular signaling would lead to metabolic bone diseases such as osteoporosis. Currently a number of anti-osteoporosis interventions are restricted by side effects, complications and long-term intolerance. This review aims to summarize the bone cellular communication involved in bone remodeling and its usage to develop new drugs for osteoporosis. Methods: We searched PubMed for publications from 1 January 1980 to 1 January 2018 to identify relevant and latest literatures, evaluation and prospect of osteoporosis medication were summarized. Detailed search terms were ‘osteoporosis’, ‘osteocyte’, ‘osteoblast’, ‘osteoclast’, ‘bone remodeling’, ‘chondrocyte’, ‘osteoporosis treatment’, ‘osteoporosis therapy’, ‘bisphosphonates’, ‘denosumab’, ‘Selective Estrogen Receptor Modulator (SERM)’, ‘PTH’, ‘romosozumab’, ‘dkk-1 antagonist’, ‘strontium ranelate’. Results: A total of 170 papers were included in the review. About 80 papers described bone cell interactions involved in bone remodeling. The remaining papers were focused on the novel advanced and new horizons in osteoporosis therapies. Conclusion: There exists a complex signal network among bone cells involved in bone remodeling. The disorder of cell-cell communications may be the underlying mechanism of osteoporosis. Current anti-osteoporosis therapies are effective but accompanied by certain drawbacks simultaneously. Restoring the abnormal signal network and individualized therapy are critical for ideal drug development.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Abdullateef A. Alzolibani ◽  
Khaled Zedan

Long-term therapy with the macrolide antibiotic erythromycin was shown to alter the clinical course of diffuse panbronchiolitis in the late 1980s. Since that time, macrolides have been found to have a large number of anti-inflammatory properties in addition to being antimicrobials. These observations provided the rationale for many studies performed to assess the usefulness of macrolides in other inflammatory diseases including skin and hair disorders, such as rosacea, psoriasis, pityriasis rosea, alopecia areata, bullous pemphigoid, and pityriasis lichenoides. This paper summarizes a collection of clinical studies and case reports dealing with the potential benefits of macrolides antibiotics in the treatment of selected dermatoses which have primarily been classified as noninfectious and demonstrating their potential for being disease-modifying agents.


Author(s):  
Jesus Medical Delgado-Calle ◽  
Teresita Bellido

Osteocytes, former osteoblasts encapsulated by mineralized bone matrix, are far from being passive and metabolically inactive bone cells. Instead, osteocytes are multifunctional and dynamic cells capable of integrating hormonal and mechanical signals and transmitting them to effector cells in bone as well as in distant tissues. Osteocytes are a significant source of molecules that regulate bone homeostasis by integrating mechanical cues and hormonal signals that coordinate the differentiation and function of osteoclasts and osteoblasts. Osteocyte function is altered in rare and common bone diseases, suggesting that osteocyte dysfunction is directly involved in the pathophysiology of disorders affecting the skeleton. Advances in osteocyte biology initiated the development of novel therapeutics interfering with osteocyte secreted molecules. Moreover, osteocytes are targets and key distributors of biological signals mediating the beneficial effects of various bone therapeutics used in the clinic. Herein, we review the most recent discoveries in osteocyte biology demonstrating that osteocytes regulate bone homeostasis and bone marrow fat via paracrine signaling, influence body composition and energy metabolism via endocrine signaling, and contribute to the damaging effects of diabetes mellitus and hematological and metastatic cancers in the skeleton.


2020 ◽  
Vol 22 (1) ◽  
pp. 77-104
Author(s):  
Aditi Sharma ◽  
Lalit Sharma ◽  
Rohit Goyal

: Bone is one of the dynamic tissues in the human body that undergoes continuous remodelling through subsequent actions of bone cells, osteoclasts, and osteoblasts. Several signal transduction pathways are involved in the transition of mesenchymal stem cells into osteoblasts. These primarily include Runx2, ATF4, Wnt signaling and sympathetic signalling. The differentiation of osteoclasts is controlled by M-CSF, RANKL, and costimulatory signalling. It is well known that bone remodelling is regulated through receptor activator of nuclear factor-kappa B ligand followed by the binding to RANK, which eventually induces the differentiation of osteoclasts. The resorbing osteoclasts secrete TRAP, cathepsin K, MMP-9 and gelatinase to digest the proteinaceous matrix of type I collagen and form a saucer-shaped lacuna along with resorption tunnels in the trabecular bone. Osteoblasts secrete a soluble decoy receptor, osteoprotegerin that prevents the binding of RANK/RANKL and thus moderating osteoclastogenesis. Moreover, bone homeostasis is also regulated by several growth factors, cytokines, calciotropic hormones, parathyroid hormone and sex steroids. The current review presents a correlation of the probable molecular targets underlying the regulation of bone mass and the role of essential metabolic elements in bone remodelling. Targeting these signaling pathways may help design newer therapies for treating bone diseases.


Sign in / Sign up

Export Citation Format

Share Document