scholarly journals Space High-Voltage Power Module

2021 ◽  
Vol 9 ◽  
Author(s):  
Wenjie Zhao ◽  
Yuanyuan Jiang ◽  
Jianchao Wu ◽  
Yonghui Huang ◽  
Yan Zhu ◽  
...  

With the rapid development of the world’s aerospace technologies, a high-power and high-reliability space high-voltage power supply is significantly required by new generation of applications, including high-power electric propulsion, space welding, deep space exploration, and space solar power stations. However, it is quite difficult for space power supplies to directly achieve high-voltage output from the bus, because of the harshness of the space environment and the performance limitations of existing aerospace-grade electronic components. This paper proposes a high-voltage power supply module design for space welding applications, which outputs 1 kV and 200 W when the input is 100 V. This paper also improves the efficiency of the high-voltage converter with a phase-shifted full-bridge series resonant circuit, then simulates the optimized power module and the electric field distribution of the high-voltage circuit board.

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1228
Author(s):  
Marcin Winnicki ◽  
Artur Wiatrowski ◽  
Michał Mazur

High Power Impulse Magnetron Sputtering (HiPIMS) was used for deposition of indium tin oxide (ITO) transparent thin films at low substrate temperature. A hybrid-type composite target was self-prepared by low-pressure cold spraying process. Prior to spraying In2O3 and oxidized Sn powders were mixed in a volume ratio of 3:1. Composite In2O3/Sn coating had a mean thickness of 900 µm. HiPIMS process was performed in various mixtures of Ar:O2: (i) 100:0 vol.%, (ii) 90:10 vol.%, (iii) 75:25 vol.%, (iv) 50:50 vol.%, and (v) 0:100 vol.%. Oxygen rich atmosphere was necessary to oxidize tin atoms. Self-design, simple high voltage power switch capable of charging the 20 µF capacitor bank from external high voltage power supply worked as a power supply for an unbalanced magnetron source. ITO thin films with thickness in the range of 30–40 nm were obtained after 300 deposition pulses of 900 V and deposition time of 900 s. The highest transmission of 88% at λ = 550 nm provided 0:100 vol. % Ar:O2 mixture, together with the lowest resistivity of 0.03 Ω·cm.


Author(s):  
E.E. Bowles ◽  
S. Chapelle ◽  
G.X. Ferguson ◽  
D.S. Furuno ◽  
M. Marietta

Author(s):  
Bolarinwa H.S. ◽  
Fajingbesi F.E. ◽  
Yusuf A. ◽  
Animasahun L. O. ◽  
Babatunde Y. O.

A high voltage power supply is a key component in the advancement of science and technology. Application of high voltage power supply requires careful attention to critical variables such as voltage ripple, long and shortterm stability, repeatability and accuracy. These are important factors in the consideration of reliable scientific data. This paper presents the design of a low-cost high voltage power supply from the off-the-shelf electronics components to meet the high-end requirement of high voltage power supply. A 30kV, 63.8mA maximum power supply was constructed at the Fountain University electronics workshop. This high voltage directs current (HVDC) power supply was built around three basic compartments that include an adjustable low voltage power supply (LVPS), a high frequency oscillator, and a line output transformer (LOPT) using flyback transformer, NE555timer, BU508D BJT, and other off-the-shelf components. The current-voltage relationship at the output of the constructed High Voltage Direct Current was found to be linear. This power source will serve any high DC voltage applications such as electrospinning. The constructed 30kV power supply has been tested in the electrospinning laboratory of the Center for Energy Research and Development (CERD) Obafemi Awolowo University (OAU) Ile-Ife. The unit successfully electrospun Zinc-Titaninm polymeric solution into fibers at about 8 kV. The importance of this fabricated device is its high reliability despite its low cost and capability to produce different magnitude of high voltage DC.


2010 ◽  
Vol 38 (10) ◽  
pp. 2604-2610 ◽  
Author(s):  
Alex Pokryvailo ◽  
Costel Carp ◽  
Clifford Scapellati

Sign in / Sign up

Export Citation Format

Share Document