scholarly journals Decentralized Fast Delayed Signal Cancelation Secondary Control for Low Voltage Ride-Through Application in Grid Supporting Grid Feeding Microgrid

2021 ◽  
Vol 9 ◽  
Author(s):  
Elutunji Buraimoh ◽  
Innocent E. Davidson ◽  
Fernando Martinez-Rodrigo

In this study, a distributed secondary control is proposed alongside the conventional primary control to form a hierarchical control scheme for the Low Voltage Ride-Through (LVRT) control and applications in the inverter-based microgrid. The secondary control utilizes a fast Delayed Signal Cancelation (DSC) algorithm for the secondary control loop to control the reactive and active power reference by controlling the sequences generated. The microgrid consists of four Distributed Energy Resources (DER) sources interfaced to the grid through interfacing inverters coordinated by droop for effective power-sharing according to capacities. The droop also allows for grid supporting application for microgrid’s participation in frequency and voltage regulation in the main grid. The proposed decentralized fast DSC performance is evaluated with centralized secondary and traditional primary control using OPAL-RT Lab computation and MATLAB/SIMULINK graphical user interface for offline simulations and real-time digital simulator verification. This study presents and discusses the results.

Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 140 ◽  
Author(s):  
Eva González-Romera ◽  
Enrique Romero-Cadaval ◽  
Carlos Roncero-Clemente ◽  
Mercedes Ruiz-Cortés ◽  
Fermín Barrero-González ◽  
...  

It is usual in literature that power sharing among grid-forming sources of an isolated microgrid obeys their energy rating, instead of economic agreements between stakeholders, and circulating energy among them is usually avoided. However, these energy interchanges make strong sense and classical power sharing methods must be reformulated in the context of prosumer-based microgrids. This paper proposes a secondary control method for a prosumer-based low-voltage nanogrid that allows for energy interchange between prosumers, where storage systems, together with PV generators, are the controllable grid-forming sources. A power flow technique adapted to islanded microgrids is used for secondary control algorithm and the whole hierarchical control strategy for the prosumer converter is simulated and validated. This hierarchical control consists of three stages: tertiary control plans the energy interchange among prosumers, secondary obtains different voltage and power setpoints for each of the grid-forming sources, and, finally, primary control guarantees stable voltage and frequency values within the nanogrid with droop rules. Inner control loops for the power converter are also defined to track setpoints and assure stable performance. Simulation tests are carried out, which prove the stability of the proposed methods and the accuracy of the setpoint tracking.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6266
Author(s):  
Junjie Ma ◽  
Xudong Wang ◽  
Siyan Zhang ◽  
Hanying Gao

To solve the problems of frequency and voltage deviation caused by the droop control while meeting the requirements of rapid response, a distributed finite-time secondary control scheme is presented. Unlike the traditional cooperative controllers, this scheme is fully distributed; each unit only needs to communicate with its immediate neighbors. A control protocol for frequency restoration and active power sharing is proposed to synchronize the frequency of each unit to the reference value, and achieve accurate active power distribution in a finite-time manner as well. The mismatch of the line impedance is considered, and a consensus-based adaptive virtual impedance control is proposed. The associated voltage drop is considered to be the compensator for the voltage regulation. Then, a distributed finite-time protocol for voltage restoration is designed. The finite-time convergence property and the upper bound of convergence times are guaranteed with rigorous Lyapunov proofs. Case studies in MATLAB are carried out, and the results demonstrate the effectiveness, the robustness to load changes, plug-and play capacity, and better convergence performance of the proposed control scheme.


Author(s):  
Sayyed Ali Akbar Shahriari ◽  
Mohammad Mohammadi ◽  
Mahdi Raoofat

Purpose The purpose of this study is to propose a control scheme based on state estimation algorithm to improve zero or low-voltage ride-through capability of permanent magnet synchronous generator (PMSG) wind turbine. Design/methodology/approach Based on the updated grid codes, during and after faults, it is necessary to ensure wind energy generation in the network. PMSG is a type of wind energy technology that is growing rapidly in the network. The control scheme based on extended Kalman filter (EKF) is proposed to improve the low voltage ride-through (LVRT) capability of the PMSG. In the control scheme, because the state estimation algorithm is applied, the requirement of DC link voltage measurement device and generator speed sensor is removed. Furthermore, by applying this technique, the extent of possible noise on measurement tools is reduced. Findings In the proposed control scheme, zero or low-voltage ride-through capability of PMSG is enhanced. Furthermore, the requirement of DC link voltage measurement device and generator speed sensor is removed and the amount of possible noise on the measurement tools is minimized. To evaluate the ability of the proposed method, four different cases, including short and long duration short circuit fault close to PMSG in the presence and absence of measurement noise are studied. The results confirm the superiority of the proposed method. Originality/value This study introduces EKF to enhance LVRT capability of a PMSG wind turbine.


Electronics ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1314 ◽  
Author(s):  
Oswaldo López-Santos ◽  
Yeison Alejandro Aldana-Rodríguez ◽  
Germain Garcia ◽  
Luis Martínez-Salamero

DC–DC interlinking converters (ILCs) allow bidirectional energy exchange between DC buses of different voltage levels in microgrids. This paper introduces a multimode control approach of a half-bridge DC–DC converter interlinking an extra-low-voltage DC (ELVDC) bus of 48 VDC and a low-voltage DC (LVDC) bus of 240 VDC within a hybrid microgrid. By using the proposed control, the converter can transfer power between the buses when the other converters regulate them, or it can ensure the voltage regulation of one of the buses, this originating from its three operation modes. The proposed control scheme is very simple and provides a uniform system response despite the dependence of the converter dynamic on the operating point and the selected mode. Simulation and experimental results validated the theoretical development and demonstrated the usefulness of the proposed scheme.


Sign in / Sign up

Export Citation Format

Share Document