scholarly journals Improvement of Condensation Model With the Presence of Non-Condensable Gas for Thermal-Hydraulic Analysis in Containment

2021 ◽  
Vol 9 ◽  
Author(s):  
Tianlin Wang ◽  
Di Wang ◽  
Lili Tong ◽  
Xuewu Cao

Steam condensation plays a key role in prediction of the pressure behavior and hydrogen distribution in the containment during a hypothetical loss-of-coolant accident or a severe accident in a light water nuclear reactor. The objective of this study is to evaluate and improve the condensation model in GASFLOW code. Reynolds analogy coupled with wall function and Chilton-Colburn empirical analogy is used to model heat and mass transfer in GASFLOW, which has requirements for dimensional distance of the first cell near the wall and some deficiencies in description of heat and mass transfer process in the stagnant zone. Based on the evaluation of original condensation, the results shows good agreement with COPAIN experiment cases where the mass fraction of air ranges from 76.7 to 86.4%. However, with the changes in geometry of the facility and the presence of helium, the original model has a large deviation in the prediction of pressure, temperature and gas distribution compared with MISTRA ISP47 (OECD International Standard Problem No. 47) experiment data. This work proposes a modified condensation model which uses McAdams correlation and Schlichting correlation with a weight factor to calculate natural, forced, or mixed convection heat transfer coefficient, and adopts Chilton-Colburn empirical analogy to model mass transfer. The modified model has no requirement for the dimensionless distance near the wall in heat and mass transfer calculation and improves the prediction performance of heat transfer in stagnant zone. The prediction result of the modified model shows good agreements with MISTRA ISP47 problem, and the error of it compared with COPAIN experiment data is within 25% which is the same as that predicted by the original model.

Author(s):  
TaeHyub Hong ◽  
JongWook Go ◽  
MiRo Seo

In this study, computational fluid dynamics simulation of gas-droplet flow in a spray injection in a THAI vessel is performed and the heat and mass transfer between the gas and the droplets are investigated. The purpose of the numerical simulation was validation of a CFD model to use in a hydrogen risk assessment in a containment building under severe accident conditions. The numerical simulation has to cover the physical phenomena that occur when spray water is injected downward into stationary gas in a large closed vessel. In order to model the two phase flow of the gas and droplets, two different modelling approaches are applied, one based on the Lagrangian approach and the other based on the Eulerian approach. In both approaches, the gas-droplet interactions are modelled using the two-way Lagrangian particle model and dispersed multiphase model to simulate gas-droplet interaction, two way coupling of momentum, and the heat and mass transfer between gas phase and droplet phase. For droplet heat and mass transfer, convective heat transfer and diffusion limited mass transfer are assumed. The calculated change in the temperature of the gas shows qualitative agreement with the experimental results but the gas temperature decrease was over predicted with both approaches. The calculated pressure shows good agreement with experimental results in both approaches. Both approaches also show similar prediction of temperature and pressure; therefore, they can both be applied to the containment analysis. The heat transfer coefficient in the gas-droplet heat transfer should be modified to be suitable for the spray flow. When considering that the spray system in the containment building is to be operated de-pressurized, the CFD model for the spray flow should be suitable for the thermal hydraulic analysis of the containment building.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 702
Author(s):  
Ramanahalli Jayadevamurthy Punith Gowda ◽  
Rangaswamy Naveen Kumar ◽  
Anigere Marikempaiah Jyothi ◽  
Ballajja Chandrappa Prasannakumara ◽  
Ioannis E. Sarris

The flow and heat transfer of non-Newtonian nanofluids has an extensive range of applications in oceanography, the cooling of metallic plates, melt-spinning, the movement of biological fluids, heat exchangers technology, coating and suspensions. In view of these applications, we studied the steady Marangoni driven boundary layer flow, heat and mass transfer characteristics of a nanofluid. A non-Newtonian second-grade liquid model is used to deliberate the effect of activation energy on the chemically reactive non-Newtonian nanofluid. By applying suitable similarity transformations, the system of governing equations is transformed into a set of ordinary differential equations. These reduced equations are tackled numerically using the Runge–Kutta–Fehlberg fourth-fifth order (RKF-45) method. The velocity, concentration, thermal fields and rate of heat transfer are explored for the embedded non-dimensional parameters graphically. Our results revealed that the escalating values of the Marangoni number improve the velocity gradient and reduce the heat transfer. As the values of the porosity parameter increase, the velocity gradient is reduced and the heat transfer is improved. Finally, the Nusselt number is found to decline as the porosity parameter increases.


Author(s):  
Yao Li ◽  
Haiqing Si ◽  
Jingxuan Qiu ◽  
Yingying Shen ◽  
Peihong Zhang ◽  
...  

Abstract The plate-fin heat exchanger has been widely applied in the field of air separation and aerospace due to its high specific surface area of heat transfer. However, the low heat transfer efficiency of its plate bundles has also attracted more attention. It is of great significance to optimize the structure of plate-fin heat exchanger to improve its heat transfer efficiency. The plate bundle was studied by combining numerical simulation with experiment. Firstly, according to the heat and mass transfer theory, the plate bundle calculation model of plate-fin heat exchanger was established, and the accuracy of the UDF (User-Defined Functions) for describing the mass and heat transfer was verified. Then, the influences of fin structure parameters on the heat and mass transfer characteristics of channel were discussed, including the height, spacing, thickness and length of fins. Finally the influence of various factors on the flow field performance under different flow states was integrated to complete the optimal design of the plate bundle.


Author(s):  
Boming Yu

In the past three decades, fractal geometry and technique have received considerable attention due to its wide applications in sciences and technologies such as in physics, mathematics, geophysics, oil recovery, material science and engineering, flow and heat and mass transfer in porous media etc. The fractal geometry and technique may become particularly powerful when they are applied to deal with random and disordered media such as porous media, nanofluids, nucleate boiling heat transfer. In this paper, a summary of recent advances is presented in the areas of heat and mass transfer in fractal media by fractal geometry technique. The present overview includes a brief summary of the fractal geometry technique applied in the areas of heat and mass transfer; thermal conductivities of porous media and nanofluids; nucleate boiling heat transfer. A few comments are made with respect to the theoretical studies that should be made in the future.


2014 ◽  
Vol 136 (12) ◽  
Author(s):  
Raj Nandkeolyar ◽  
Peri K. Kameswaran ◽  
Sachin Shaw ◽  
Precious Sibanda

We investigated heat and mass transfer on water based nanofluid due to the combined effects of homogeneous–heterogeneous reactions, an external magnetic field and internal heat generation. The flow is generated by the movement of a linearly stretched surface, and the nanofluid contains nanoparticles of copper and gold. Exact solutions of the transformed model equations were obtained in terms of hypergeometric functions. To gain more insights regarding subtle impact of fluid and material parameters on the heat and mass transfer characteristics, and the fluid properties, the equations were further solved numerically using the matlab bvp4c solver. The similarities and differences in the behavior, including the heat and mass transfer characteristics, of the copper–water and gold–water nanofluids with respect to changes in the flow parameters were investigated. Finally, we obtained the numerical values of the skin friction and heat transfer coefficients.


Author(s):  
Florian Wassermann ◽  
Sven Grundmann ◽  
Michael Kloss ◽  
Heinz-Peter Schiffer

Cyclone cooling is a promising method to enhance heat-transfer processes in future internal turbine-blade leading-edge cooling-ducts. The basic component of such cooling channels is the swirl generator, which induces a swirling movement of the coolant. The angular momentum generates stable, complex and three-dimensional flow structures of helical shape with alternating axial flow directions. Full three-dimensional and three-component velocity measurements using magnetic resonance velocimetry (3D3C-MRV) were conducted, with the aim to understand the complex structure of pipe flows with strong swirl. In order to mimic the effect of different installation concepts of the cyclone-cooling ducts an idealized bend-duct swirl-tube configuration with variable exit orifices has been investigated. Pronounced helical flow structures and distinct velocity zones could be found in this swirl flow. One substantial result is the identification of stationary helix-shaped streaks of high axial velocity in the direct vicinity of the wall. These findings are in good agreement with mass-transfer measurements that also show helix-shaped structures with increased mass transfer at the inner surface of the tube. According to the Reynolds analogy between heat and mass transfer, augmented heat-transfer processes in these areas are to be expected.


2018 ◽  
Vol 194 ◽  
pp. 01007
Author(s):  
Maria V. Bartashevich

Mathematical model of conjugated heat and mass transfer in absorption on the entrance region of the semi-infinite liquid film of lithium bromide water solution is investigated for different values of Froude number. The calculations shown that larger values of Froude number corresponds to a smaller thickness of the falling film. It was demonstrated that for large values of the Froude number the heat transfer from the surface is greater than for smaller values.


Sign in / Sign up

Export Citation Format

Share Document