scholarly journals 3-Dimensional Multiphysics Modeling of Behaviors of Pressurized Water Reactor Fuel Rods With Missing Pellet Surface

2021 ◽  
Vol 9 ◽  
Author(s):  
Xinhu Zhang ◽  
Zhao Wang ◽  
Yongbo XI ◽  
Wenbo Liu ◽  
Yongjun Deng ◽  
...  

A 3-dimensional (3D) fuel performance analysis program, able to simulate normal operating conditions and accident conditions for PWR fuel behaviors, was developed based on the Multiphysics Object-Oriented Simulation Environment (MOOSE) finite-element framework. By taking fission products swelling, densification and expansion of pellet, thermal and irradiation creep, gap heat transfer, fission gas release, and cladding crack propagation into consideration, detailed fuel behaviors have been simulated in a multiphysics coupling way. Local defects in fuel pellet caused during manufacturing and filling processes known as the missing pellet surface (MPS) can cause abnormal stress distribution of the cladding and it could even lead to cladding failure. Taking Stress Corrosion Cracking (SCC) phenomenon into consideration, a simulation of PWR fuel rodlet that consists of a pellet with an MPS defect and an intact pellet was conducted. The fuel rod has experienced with sorts of events, including normal operating conditions and a high-power ramp event. The simulation results indicated that: 1) The MPS defect affects the temperature and displacement distribution in the vicinity of the MPS defect. When the pellets are in contact with the cladding, the inner surface of the cladding presents a large tensile hoop stress, which accelerates the crack propagation. 2) During the ramp event, the crack propagation rate was higher than that under normal condition and crack length expanded by about 0.1 µm.

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4380
Author(s):  
Alirio Andres Bautista Villamil ◽  
Juan Pablo Casas Rodriguez ◽  
Alicia Porras Holguin ◽  
Maribel Silva Barrera

The T-90 Calima is a low-wing monoplane aircraft. Its structure is mainly composed of different components of composite materials, which are mainly bonded by using adhesive joints of different thicknesses. The T-90 Calima is a trainer aircraft; thus, adverse operating conditions such as hard landings, which cause impact loads, may affect the structural integrity of aircrafts. As a result, in this study, the mode I crack propagation rate of a typical adhesive joint of the aircraft is estimated under impact and constant amplitude fatigue loading. To this end, effects of adhesive thickness on the mechanical performance of the joint under quasistatic loading conditions, impact and constant amplitude fatigue in double cantilever beam (DCB) specimens are experimentally investigated. Cyclic impact is induced using a drop-weight impact testing machine to obtain the crack propagation rate (da/dN) as a function of the maximum strain energy release rate (GImax) diagram; likewise, this diagram is also obtained under constant amplitude fatigue, and both diagrams are compared to determine the effect of each type of loading on the structural integrity of the joint. Results reveal that the crack propagation rate under impact fatigue is three orders of magnitude greater than that under constant amplitude fatigue.


Author(s):  
A.S. Sotnikov

The process models of iodine corrosion cracking of zirconium fuel claddings, used to calculate the durability of the cladding (time for loss of tightness) are considered. A method for determining the corrosion crack propagation rate in claddings made of E110 alloy Ø 9.1 × 0.65 mm and the results of corresponding studies (estimation of corrosion crack propagation rate and stress intensity factor KISCC) are given at a temperature of 380 °C in iodine environment at a concentration of ~ 0.2 mg/cm2. Studies were performed using tubular samples with a fatigue crack. A fatigue crack on the inner surface of cladding made of E110 Ø 9.1 × 0.65 mm alloy is the initiator of a corrosion crack emergence (nucleation). The results of corresponding studies are consistent with data from the literature. The proposed study of the corrosion cracking process of fuel claddings in accordance with the results of fracture mechanics is of practical importance for substantiation of the regulation of reactor operating conditions


Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1047
Author(s):  
Wenxiang Jiang ◽  
Xiaoyi Ren ◽  
Jinghao Zhao ◽  
Jianli Zhou ◽  
Jinyao Ma ◽  
...  

An in situ scanning electron microscope (SEM) tensile test for Ni-based single-crystal superalloy was carried out at 1000 °C. The stress displacement was obtained, and the yield strength and tensile strength of the superalloy were 699 MPa and 826 MPa, respectively. The crack propagation process, consisting of Model I crack and crystallographic shearing crack, was determined. More interestingly, the crack propagation path and rate affected by eutectics was directly observed and counted. Results show that the coalescence of the primary crack and second microcrack at the interface of a γ/γ′ matrix and eutectics would make the crack propagation rate increase from 0.3 μm/s to 0.4 μm/s. On the other hand, crack deflection decreased the rate to 0.05 μm/s. Moreover, movement of dislocations in front of the crack was also analyzed to explain the different crack propagation behavior in the superalloy.


2008 ◽  
Vol 144 ◽  
pp. 90-93 ◽  
Author(s):  
Grzegorz Gasiak ◽  
Grzegorz Robak

The paper presents a test stand for measurements of fatigue crack propagation. The stand includes a fatigue machine MZGS–100 and a device for registration of the crack length. The test stand is equipped with a stereoscopic microscope with fluent magnification of 7× – 67.5×. The microscope can be applied for observation of fatigue crack development. The microscope is also equipped with a digital camera, which enables continuous observation of fatigue crack development on the computer monitor and it is not necessary to stop the machine. The test results obtained at this stand can be used for determination of fatigue life and fatigue crack propagation rate.


Author(s):  
Shunsuke Toyoda ◽  
Sota Goto ◽  
Yasushi Kato ◽  
Satoru Yabumoto ◽  
Akio Sato

Based on the appreciable progress being made in quality control and assurance technology for the electric resistance welding process, the number of applications for high-frequency electric resistance welded (HFW) linepipe in highly demanding, severe environments, such as offshore and sour environments, has gradually increased. Resistance to hydrogen-induced cracking (HIC) is the most important property for a linepipe to possess for use in sour environments. However, resistance to HIC, especially along the longitudinal weld seam, has not yet been fully related to metallurgical factors. In this study, to clarify the effects of inclusions on the sour resistance properties of X60- to X70-grade steels, their resistances to HIC were numerically simulated. For the simulation, the steels were assumed to have a yield strength of 562 MPa and a tensile strength of 644 MPa. To estimate the effect of nonmetallic inclusions, a virtual inclusion was situated at the center of a 10-mm-thick HIC test specimen. Tests were performed using NACE test solution A. The crack propagation rate was calculated as a function of the content of diffusible hydrogen, the diameter of the inclusion, and the fracture toughness of the matrix after hydrogen absorption. In the propagation calculation, the resistance to chemical reactions at the interface of the inclusion matrix was also considered to be a delaying factor. By assuming a resistance to chemical reactions at the interface, the crack propagation rate could be fitted to the actual HIC propagation rate. Based on the numerical simulation results, HFW linepipe with a high-quality weld seam was developed. Controlling the morphologies and distributions of oxides generated during the welding process is the key factor for improving the resistance to HIC. Using a combination of optimized chemical composition, microstructure and oxide content, the weld seam of the developed X70-grade HFW steel pipe showed excellent resistance to HIC.


Sign in / Sign up

Export Citation Format

Share Document