scholarly journals Estimating the Reduction in Future Fleet-Level CO2 Emissions From Sustainable Aviation Fuel

2021 ◽  
Vol 9 ◽  
Author(s):  
Samarth Jain ◽  
Hsun Chao ◽  
Muharrem Mane ◽  
William A. Crossley ◽  
Daniel A. DeLaurentis

With rising concerns over commercial aviation’s contribution to global carbon emissions, the aviation industry faces tremendous pressure to adopt advanced solutions for reducing its share of CO2 emissions. One near-term potential solution to mitigate this global emissions situation is to operate existing aircraft with sustainable aviation fuel (SAF); this solution requires almost no modification to current aircraft, making it the “quickest” approach to reduce aviation carbon emissions, albeit the actual impact will be determined by the degree to which airlines adopt and use SAF, the ticket price impact of SAF, and the future growth of travel demand. This article presents results that estimate the expected fleet-wide emissions of future airline operations using SAF considering various projected traveler demand and biofuel penetration/utilization levels. The work demonstrates an approach to make these predictions by modeling the behavior of a profit-seeking airline using the Fleet-Level Environmental Evaluation Tool (FLEET). Considering five future SAF scenarios and two future passenger demand projection scenarios, FLEET estimates future fleet-level CO2 emissions, showcasing the possible upper and lower bounds on future aviation emissions when SAF is introduced for use in airline fleets. Results show that the future fleet-level CO2 emissions for all scenarios with SAF are lower than the baseline scenario with no SAF, for all demand projection scenarios. The passenger demand served and the trips flown for a given SAF scenario depends on the SAF price and the biofuel penetration levels. This shows that even if airlines serve a higher passenger demand for some future scenarios, the carbon emissions could still be lower than the current baseline scenario where airlines only use conventional jet fuel.

Author(s):  
Geoffrey D. Gosling ◽  
David Ballard

The paper describes the development of an air passenger demand model for the Baltimore–Washington metropolitan region that was undertaken as part of a recently concluded ACRP project that explored the use of disaggregated socioeconomic data in air passenger demand studies. The model incorporated a variable reflecting the change in household income distribution, together with more traditional aggregate causal variables: population, employment, average household income, and airfares as measured by the average U.S. airline yield, as well as several year-specific dummy variables. The model was estimated on annual data for the period 1990 to 2010 and obtained statistically significant estimated coefficients for all variables, including both the average household income and the household income distribution variable. Including household income distribution in the model resulted in a significant change to the estimated coefficient for average household income, giving a much higher estimated elasticity of demand with respect to average household income compared with a model that does not consider changes in household income distribution. This has important implications for the use of such demand models for forecasting, as household income distribution and average household income may change in the future in quite different ways, which would affect the future levels of air passenger travel projected by the models.


2014 ◽  
Vol 997 ◽  
pp. 736-739
Author(s):  
Lin Hui Zeng ◽  
Guang Ming Li ◽  
Song Li

Private vehicle traffic is among the main contributors to anthropogenic carbon emissions. Efforts have been made to control private vehicle in major cities around the world to mitigate carbon emissions from transport sector. The aim of the paper was to find policy implications for energy saving and carbon reduction in transportation in the future. Gompertz model and Spread Sheet model were applied in this paper to estimates energy consumption and carbon emissions from Shanghai’s vehicle transport in the future. Results showed that vehicle ownership of the city will reach 6.15 million in 2030. Under BAU scenario, CO2 emissions from Shanghai’s vehicle will reach 34.163 million t in 2030. While under the FEP scenario, gasoline demand will reduce by 30% compared with the baseline scenario. It shows that fuel economy policy is essential in energy saving and carbon reduction in vehicle sector.


Author(s):  
Cherie Gambino ◽  
T. Agami Reddy

Abstract Stakeholders in the aviation industry committed to a goal of 50% reduction in carbon emissions by the year 2050, to be achieved by reducing emissions 1.5% each year from 2020 onwards. There are multiple pathways to achieve this goal however; with, the most promising technology being Sustainable Aviation Fuels (SAF), which are biofuels blended with kerosene. As the industry shifts towards SAF, it is important to evaluate these fuels in terms of their long-term sustainability, and this is the objective of the current study. Sixteen types of fuels were assessed which include fossil, natural gas, electric, and SAF. A Multi Criterion Decision Making methodology was adopted which considers three categories, namely environmental, economic, and social aspects which in turn are broken up into 8 indicators in all (such as ecological footprints, cost of transportation, investment cost, operating costs, employment generation, and health & safety). A Monte Carlo analysis was also performed to analyze sensitivity of the results to the weights attributed to the three categories. The most sustainable fuel was found to be Hydrogen, with a score of 0.91 out of 1.0. The least sustainable were determined to be the military kerosene-based fuels (with the experimental fuel JP-8 + 100LT being the poorest with a normalized score of 0.50).


2014 ◽  
Vol 18 (1) ◽  
pp. 239-247 ◽  
Author(s):  
Hasan Yamik

Biodiesel is an alternative fuel for diesel engines which doesn?t contain pollutants and sulfur; on the contrary it contains oxygen. In addition, both physical and chemical properties of sunflower oil methyl ester (SME) are identical to diesel fuel. Conversely, diesel and biodiesel fuels are widely used with some additives to reduce viscosity, increase the amount of cetane, and improve combustion efficiency. This study uses diesel fuel, SME and its mixture with aviation fuel JetA-1 which are widely used in the aviation industry. . Fuel mixtures were used in 1-cylinder, 4-stroke diesel engine under full load and variable engine speeds. In this experiment, engine performance and emission level are investigated. As a conclusion, as the JetA-1 ratio increases in the mixture, lower nitrogen oxide (NOx) emission is measured. Also, specific fuel consumption is lowered.


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 782
Author(s):  
Na Zhang ◽  
Zijia Wang ◽  
Feng Chen ◽  
Jingni Song ◽  
Jianpo Wang ◽  
...  

There are increasing traffic pollution issues in the process of urbanization in many countries; urban rail transit is low-carbon and widely regarded as an effective way to solve such problems. The passenger flow proportion of different transportation types is changing along with the adjustment of the urban traffic structure and a growing demand from passengers. The reduction of carbon emissions brought about by rail transit lacks specific quantitative research. Based on a travel survey of urban residents, this paper constructed a method of estimating carbon emissions from two different scenarios where rail transit is and is not available. This study uses the traditional four-stage model to forecast passenger volume demand at the city level and then obtains the basic target parameters for constructing the carbon emission reduction model, including the trip origin-destination (OD), mode, and corresponding distance range of different modes on the urban road network. This model was applied to Baoji, China, where urban rail transit will be available from 2023. It calculates the changes in carbon emission that rail transit can bring about and its impact on carbon emission reductions in Baoji in 2023.


Author(s):  
A. Alexiou ◽  
A. Tsalavoutas ◽  
B. Pons ◽  
N. Aretakis ◽  
I. Roumeliotis ◽  
...  

At present, nearly 100% of aviation fuel is derived from petroleum using conventional and well known refining technology. However, the fluctuations of the fuel price and the vulnerability of crude oil sources have increased the interest of aviation industry in alternate energy sources. The motivation of this interest is actually twofold: firstly alternative fuels will help to stabilize price fluctuations by relieving the world wide demand for conventional fuel. Secondly alternative fuels could provide environmental benefits including a substantial reduction of emitted CO2 over the fuel life cycle. Thus, the ideal alternative fuel will fulfil both requirements: relieve the demand for fuels derived from crude oil and significantly reduce CO2 emissions. In the present paper, the effects of various alternative fuels on the operation of a medium transport/utility helicopter are investigated using performance models of the helicopter and its associated turboshaft engine. These models are developed in an object-oriented simulation environment that allows a direct mechanical connection to be established between them in order to create an integrated model. Considering the case of a typical mission for the specific helicopter/engine combination, a comparative evaluation of conventional and alternative fuels is then carried out and performance results are presented at both engine and helicopter level.


Subject Outlook for the aviation sector. Significance The federal government faces growing pressure to bail out the aviation industry, which is at risk of imminent collapse due to scarce foreign exchange (forex), rising fuel costs and cooling passenger demand. This would be Abuja's second bailout of the industry -- the first was in 2010 -- indicating longstanding structural, managerial and safety problems in the industry. Impacts Demand for airline tickets to northeastern cities will remain low due to concerns over continuing instability there. Well-managed carriers such as Rwandair will capture pan-African market share from carriers with governance woes, eg Arik Air. Infrastructure improvements at Ivory Coast's main airport will help it become a rival aviation hub for business travellers.


Sign in / Sign up

Export Citation Format

Share Document