scholarly journals Treatments of Thermal Neutron Scattering Data and Their Effect on Neutronics Calculations

2021 ◽  
Vol 9 ◽  
Author(s):  
Tiejun Zu ◽  
Yongqiang Tang ◽  
Zhanpeng Huang ◽  
Shuai Qin ◽  
Jie Li ◽  
...  

In the conventional method to generate thermal scattering cross section of moderator materials, only one of the coherent elastic scattering and incoherent elastic scattering is considered in neutronics calculations. For the inelastic scattering, fixed incident energy grid is used in the nuclear data processing codes. The multipoint linearization method is used to refine the incident energy grid for inelastic scattering. We select ZrHx (zirconium hydride) as an example to analyze the effects of the above described treatments on the reactivity of several critical benchmarks. The numerical results show that the incident energy grid has an obvious effect on the effective multiplication factor (keff) of the analyzed reactors; simultaneously considering the coherent and incoherent elastic scattering also affects keff by tens of pcm.

Author(s):  
D. L. Misell

In the electron microscopy of biological sections the adverse effect of chromatic aberration on image resolution is well known. In this paper calculations are presented for the inelastic and elastic image intensities using a wave-optical formulation. Quantitative estimates of the deterioration in image resolution as a result of chromatic aberration are presented as an alternative to geometric calculations. The predominance of inelastic scattering in the unstained biological and polymeric materials is shown by the inelastic to elastic ratio, I/E, within an objective aperture of 0.005 rad for amorphous carbon of a thickness, t=50nm, typical of biological sections; E=200keV, I/E=16.


1982 ◽  
Vol 117 (5) ◽  
pp. 349-352 ◽  
Author(s):  
N.G. Fadeev ◽  
I.A. Savin ◽  
V.V. Sanadze ◽  
N.B. Skachkov

2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Daniele Paolo Anderle ◽  
Tie-Jiun Hou ◽  
Hongxi Xing ◽  
Mengshi Yan ◽  
C.-P. Yuan ◽  
...  

Abstract Understanding how sea quarks behave inside a nucleon is one of the most important physics goals of the proposed Electron-Ion Collider in China (EicC), which is designed to have a 3.5 GeV polarized electron beam (80% polarization) colliding with a 20 GeV polarized proton beam (70% polarization) at instantaneous luminosity of 2 × 1033cm−2s−1. A specific topic at EicC is to understand the polarization of individual quarks inside a longitudinally polarized nucleon. The potential of various future EicC data, including the inclusive and semi-inclusive deep inelastic scattering data from both doubly polarized electron-proton and electron-3He collisions, to reduce the uncertainties of parton helicity distributions is explored at the next-to-leading order in QCD, using the Error PDF Updating Method Package (ePump) which is based on the Hessian profiling method. We show that the semi-inclusive data are well able to provide good separation between flavour distributions, and to constrain their uncertainties in the x > 0.005 region, especially when electron-3He collisions, acting as effective electron-neutron collisions, are taken into account. To enable this study, we have generated a Hessian representation of the DSSV14 set of PDF replicas, named DSSV14H PDFs.


1992 ◽  
Vol 07 (26) ◽  
pp. 2415-2421 ◽  
Author(s):  
A. P. CONTOGOURIS ◽  
F. LEBESSIS

First a unitarization procedure for an amplitude with the asymptotic behavior of the Lipatov Pomeron is presented; it amounts to its iteration along the s-channel. Next, based on this procedure, a specific model is considered and applied to the description of elastic scattering data at very high energies; it is shown that it leads to a fair description of them.


1996 ◽  
Vol 74 (7-8) ◽  
pp. 505-508 ◽  
Author(s):  
R. M. Finch ◽  
Á. Kövér ◽  
M. Charlton ◽  
G. Laricchia

Differential cross sections for elastic scattering and ionization in positron–argon collisions as a function of energy (40–150 eV) are reported at 60°. Of particular interest is the energy range 55–60 eV, where earlier measurements by the Detroit group found a drop in the elastic-scattering cross section of a factor of 2. This structure has been tentatively attributed to a cross channel-coupling effect with an open inelastic-scattering channel, most likely ionization. Our results indicate that ionization remains an important channel over the same energy range and only begins to decrease at an energy above 60 eV.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Patrick E. Hopkins ◽  
Pamela M. Norris

The accuracy of predictions of phonon thermal boundary conductance using traditional models such as the diffuse mismatch model (DMM) varies depending on the types of material comprising the interface. The DMM assumes that phonons, undergoing diffuse scattering events, are elastically scattered, which drives the energy conductance across the interface. It has been shown that at relatively high temperatures (i.e., above the Debye temperature) previously ignored inelastic scattering events can contribute substantially to interfacial transport. In this case, the predictions from the DMM become highly inaccurate. In this paper, the effects of inelastic scattering on thermal boundary conductance at metal/dielectric interfaces are studied. Experimental transient thermoreflectance data showing inelastic trends are reviewed and compared to traditional models. Using the physical assumptions in the traditional models and experimental data, the relative contributions of inelastic and elastic scattering to thermal boundary conductance are inferred.


Sign in / Sign up

Export Citation Format

Share Document