scholarly journals On the Performance of Satellite-Based Precipitation Products in Simulating Streamflow and Water Quality During Hydrometeorological Extremes

2020 ◽  
Vol 8 ◽  
Author(s):  
Jennifer Solakian ◽  
Viviana Maggioni ◽  
Adil N. Godrej

This study provides a comprehensive evaluation of streamflow and water quality simulated by a hydrological model using three different Satellite Precipitation Products (SPPs) with respect to observations from a dense rain gauge network over the Occoquan Watershed, located in Northern Virginia, suburbs to Washington, D.C., U.S. Eight extreme hydrometeorological events within a 5-year period between 2008 and 2012 are evaluated using SPPs, TMPA 3B42-V7, CMORPH V1. 0, and PERSIANN-CCS, which are based on different retrieval algorithms with varying native spatial and temporal resolutions. A Hydrologic Simulation Program FORTRAN (HSPF) hydrology and water quality model was forced with the three SPPs to simulate output of streamflow (Q), stream temperature (TW), and concentrations of total suspended solids (TSS), orthophosphate phosphorus (OP), total phosphorus (TP), ammonium-nitrate (NH4-N), nitrate-nitrogen (NO3-N), dissolved oxygen (DO), and biochemical oxygen demand (BOD) at six evaluation points within the watershed. Results indicate fairly good agreement between gauge- and SPP-simulated Q for TMPA and CMORPH, however, PERSIANN-simulated Q is lowest among SPPs, due to its inability to accurately measure stratiform precipitation between intense periods of precipitation during an extreme event. Correlations of water quality indicators vary considerably, however, TW has the strongest positive linear relationship compared to other indicators evaluated in this study. SPP-simulated TSS, a flow-dependent variable, has the weakest relationship to gauge-simulated TSS among all water quality indicators, with CMORPH performing slightly better than TMPA and PERSIANN. This study demonstrated that the spatiotemporal variability of SPPs, along with their algorithms to estimate precipitation, have an influence on water quality simulations during extreme hydrometeorological events.

2020 ◽  
Vol 12 (22) ◽  
pp. 3728
Author(s):  
Jennifer Solakian ◽  
Viviana Maggioni ◽  
Adil Godrej

This study investigated the propagation of errors in input satellite-based precipitation products (SPPs) on streamflow and water quality indicators simulated by a hydrological model in the Occoquan Watershed, located in the suburban Washington, D.C. area. A dense rain gauge network was used as reference to evaluate three SPPs which are based on different retrieval algorithms. A Hydrologic Simulation Program-FORTRAN (HSPF) hydrology and water quality model was forced with the three SPPs to simulate output of streamflow (Q), total suspended solids (TSS), stream temperature (TW), and dissolved oxygen (DO). Results indicate that the HSPF model may have a dampening effect on the precipitation-to-streamflow error. The bias error propagation of all three SPPs showed a positive dependency on basin scale for streamflow and TSS, but not for TW and DO. On a seasonal basis, bias error propagation varied by product, with larger values generally found in fall and winter. This study demonstrated that the spatiotemporal variability of SPPs, along with their algorithms to estimate precipitation, have an influence on water quality simulations in a hydrologic model.


2018 ◽  
Vol 69 (10) ◽  
pp. 2940-2952 ◽  
Author(s):  
Martina Zelenakova ◽  
Pavol Purcz ◽  
Radu Daniel Pintilii ◽  
Peter Blistan ◽  
Petr Hlustik ◽  
...  

Evaluating trends in water quality indicators is a crucial issue in integrated water resource management in any country. In this study eight chemical and physical water quality indicators were analysed in seven river profiles in the River Laborec in eastern Slovakia. The analysed water quality parameters were biochemical oxygen demand (BOD5), chemical oxygen demand (CODCr), pH, temperature (t), ammonium nitrogen (NH4+-N), nitrite nitrogen (NO2--N), nitrate nitrogen (NO3--N), and total phosphorus (TP). Data from the monitored indicators were provided by the Ko�ice branch of the Slovakian Water Management Company, over a period of 15 years from 1999 to 2013. Mann�Kendall non-parametric statistical test was used for the trend analysis. Biochemical and chemical oxygen demand, ammonium and nitrite nitrogen content exhibit decreasing trends in the River Laborec. Decreasing agricultural activity in the area has had a significant impact on the trends in these parameters. However, NO2--N was the significant parameter of water quality because it mostly exceeds the limit value set in Slovak legislation, Regulation No. 269/2010 Coll. In addition, water temperature revealed an increasing trend which could be caused by global increase in air temperature. These results indicate that human activity significantly impacts the water quality.


2011 ◽  
Vol 13 (3) ◽  
pp. 390-400 ◽  
Author(s):  
Kui Chang ◽  
Jin Liang Gao ◽  
Wen Yan Wu ◽  
Yi Xing Yuan

In order to evaluate water quality for a large water distribution network comprehensively, a two-stage classification method was used and the clustering methods, self-organizing map (SOM), K-means method and fuzzy c-mean (FCM), were represented. With these clustering methods, the pipes of a large real water distribution network were divided into some groups considering one or more water quality indicators synchronously. The water quality indicators of residual chlorine, water age, THMs, TAAs, TOC and BDOC are used in this paper. Residual chlorine and water age are two main water quality indicators. THMs and TAAs can represents the disinfection byproducts information. And TOC and BDOC are used to represents biological stability. According to the clustering results, the status of water quality of the water network was analysed. The results showed that the classification of SOM could express the comprehensive water quality in a water distribution network (WDN) directly and vividly by high-dimension water quality indicator projection to a low dimensional topology grid and that two-stage classification method has higher efficiency in comparison to the traditional clustering method. Water quality comprehensive evaluation was of significance for locating water quality monitoring, water network rehabilitation and expansion.


2007 ◽  
Vol 42 (1) ◽  
pp. 63-71 ◽  
Author(s):  
Yuan-Shing Perng ◽  
Eugene I-Chen Wang ◽  
Shih-Tsung Yu ◽  
An-Yi Chang ◽  
Chi-Yuan Shih

Abstract There is an increasing trend towards the closure of white water recirculation loops in papermaking, often leading to need for system modification. A pilot-scale study was conducted using pulsed electrocoagulation technology to treat the wastewater of an old corrugated containerboard (OCC)-based paper mill, to evaluate its treatment performance. The operating variables were: a current density of 0 to 240 A/m2, a hydraulic retention time of 8 to 16 min and a coagulant (anionic polyacrylamide) dosage of 0 to 30 mg/L. The water quality indicators investigated were electrical conductivity, suspended solids (SS) and chemical oxygen demand (COD). The results obtained during the pilot-scale studies were favourable. Under the operating conditions without coagulant addition, the highest removals for conductivity, SS and COD were 47.7%, 99.3% and 75%, respectively. The use of coagulant remarkably enhanced the removal of both conductivity and COD. Using a coagulant dosage of 30 mg/L, the highest removal rates achieved for the three water quality indicators were 54.5%, 99.6% and 92.7%, respectively. These water quality levels are adequate to allow for the reuse of at least a part of the treated wastewater as makeup process water in papermaking.


2021 ◽  
Vol 13 (18) ◽  
pp. 9999
Author(s):  
Minji Park ◽  
Yongchul Cho ◽  
Kyungyong Shin ◽  
Hyungjin Shin ◽  
Sanghun Kim ◽  
...  

Spatiotemporal water quality tendencies before and after total maximum daily load (TMDL) implementation in the Hangang basin were analyzed to determine the water quality improvement resulting from the TMDL policy. The periodicities of water quality indicators were also analyzed and water quality characteristics corresponding to different unit watershed units were identified in terms of pollution source. Considering five water quality indicators, including biochemical oxygen demand and total phosphorus, it was observed that water quality indicator concentrations were low in the upstream areas of the Bukhangang and Namhangang watersheds. However, they were high between the downstream areas of the Namhangang watershed and the Imjingang watershed and in the Hangang downstream and Jinwicheon watersheds. Additionally, the concentrations of water quality indicators in most of the unit watersheds where TMDL had been implemented decreased after TMDL implementation. However, increasing tendencies in the concentrations of water quality indicators continued to be observed in some of the watershed units in the upstream areas of the Bukhangang and Namhangang watersheds, possibly because these watersheds are affected by nonpoint source pollution owing to rainfall. Therefore, in the future, it would be necessary to implement policies that take these findings into consideration.


2013 ◽  
Vol 37 (4) ◽  
pp. 338-342 ◽  
Author(s):  
Leandro Campos Pinto ◽  
Carlos Rogério de Mello ◽  
Daniel Furtado Ferreira ◽  
Léo Fernandes Ávila

The use of a large number of water quality indicators increases the costs of streamflow monitoring throughout the time. Principal Component Analysis (PCA) can be considered a promised tool for water resources management, allowing a reduction in the dimensionality of the data and facilitating their analyses. This study aimed to obtain a water quality index (WQI) to characterize the Mantiqueira Range region. Water quality indicators from a sub-basin entirely occupied by Atlantic Forest and from another predominantly occupied by pasture were normalized and used to compose the WQI. The normalized values were submitted to a PCA evaluation and the WQI was then calculated. The Indicators with greatest weight, according to the PCA, were total coliform, nitrate, fecal coliform, chemical oxygen demand and temperature. The Atlantic forest sub-basin presented the best WQI results, demonstrating the importance of the forested environment in the maintenance of water quality in springs of the Mantiqueira Range region.


TAPPI Journal ◽  
2009 ◽  
Vol 8 (3) ◽  
pp. 14-20 ◽  
Author(s):  
YUAN-SHING PERNG ◽  
EUGENE I-CHEN WANG ◽  
SHIH-TSUNG YU ◽  
AN-YI CHANG

Trends toward closure of white water recirculation loops in papermaking often lead to a need for system modifications. We conducted a pilot-scale study using pulsed electrocoagulation technology to treat the effluent of an old corrugated containerboard (OCC)-based paper mill in order to evaluate its treatment performance. The operating variables were a current density of 0–240 A/m2, a hydraulic retention time (HRT) of 8–16 min, and a coagulant (anionic polyacrylamide) dosage of 0–22 mg/L. Water quality indicators investigated were electrical con-ductivity, suspended solids (SS), chemical oxygen demand (COD), and true color. The results were encouraging. Under the operating conditions without coagulant addition, the highest removals for conductivity, SS, COD, and true color were 39.8%, 85.7%, 70.5%, and 97.1%, respectively (with an HRT of 16 min). The use of a coagulant enhanced the removal of both conductivity and COD. With an optimal dosage of 20 mg/L and a shortened HRT of 10 min, the highest removal achieved for the four water quality indicators were 37.7%, 88.7%, 74.2%, and 91.7%, respectively. The water qualities thus attained should be adequate to allow reuse of a substantial portion of the treated effluent as process water makeup in papermaking.


Hydrology ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 86
Author(s):  
Angeliki Mentzafou ◽  
George Varlas ◽  
Anastasios Papadopoulos ◽  
Georgios Poulis ◽  
Elias Dimitriou

Water resources, especially riverine ecosystems, are globally under qualitative and quantitative degradation due to human-imposed pressures. High-temporal-resolution data obtained from automatic stations can provide insights into the processes that link catchment hydrology and streamwater chemistry. The scope of this paper was to investigate the statistical behavior of high-frequency measurements at sites with known hydromorphological and pollution pressures. For this purpose, hourly time series of water levels and key water quality indicators (temperature, electric conductivity, and dissolved oxygen concentrations) collected from four automatic monitoring stations under different hydromorphological conditions and pollution pressures were statistically elaborated. Based on the results, the hydromorphological conditions and pollution pressures of each station were confirmed to be reflected in the results of the statistical analysis performed. It was proven that the comparative use of the statistics and patterns of the water level and quality high-frequency time series could be used in the interpretation of the current site status as well as allowing the detection of possible changes. This approach can be used as a tool for the definition of thresholds, and will contribute to the design of management and restoration measures for the most impacted areas.


Sign in / Sign up

Export Citation Format

Share Document