scholarly journals Assessment of Soil Functions: An Example of Meeting Competing National and International Obligations by Harnessing Regional Differences

2020 ◽  
Vol 8 ◽  
Author(s):  
Kristine Valujeva ◽  
Aleksejs Nipers ◽  
Ainars Lupikis ◽  
Rogier P. O. Schulte

The increased demand for bio based products worldwide provides an opportunity for Eastern European countries to increase their production in agriculture and forestry. At the same time, such economic development must be congruent with the European Union’s long-term climate and biodiversity objectives. As a country that is rich in bioresources, the Latvian case study is highly relevant to many other countries—especially those in Central and Eastern Europe—and faces a choice of transition pathways to meet both economic and environmental objectives. In order to assess the trade-offs between investments in the bioeconomy and the achievement of climate and biodiversity objectives, we used the Functional Land Management (FLM) framework for the quantification of the supply and demand for the primary productivity, carbon regulation and biodiversity functions. We related the supply of these three soil functions to combinations of land use and soil characteristics. The demand for the same functions were derived from European, national and regional policy objectives. Our results showed different spatial scales at which variation in demand and supply is manifested. High demand for biodiversity was associated with areas dominated by agricultural land at the local scale, while regional differences of unemployment rates and the target for GDP increases framed the demand for primary productivity. National demand for carbon regulation focused on areas dominated by forests on organic soils. We subsequently identified mismatches between the supply and demand for soil functions, and we selected spatial locations for specific land use changes and improvements in management practices to promote sustainable development of the bio-economy. Our results offer guidance to policy makers that will help them to form a national policy that will underpin management practices that are effective and tailored toward local climate conditions and national implementation pathways.

2021 ◽  
Author(s):  
Sylvia Vetter ◽  
Michael Martin ◽  
Pete Smith

<p>Reducing greenhouse gas (GHG) emissions in to the atmosphere to limit global warming is the big challenge of the coming decades. The focus lies on negative emission technologies to remove GHGs from the atmosphere from different sectors. Agriculture produces around a quarter of all the anthropogenic GHGs globally (including land use change and afforestation). Reducing these net emissions can be achieved through techniques that increase the soil organic carbon (SOC) stocks. These techniques include improved management practices in agriculture and grassland systems, which increase the organic carbon (C) input or reduce soil disturbances. The C sequestration potential differs among soils depending on climate, soil properties and management, with the highest potential for poor soils (SOC stock farthest from saturation).</p><p>Modelling can be used to estimate the technical potential to sequester C of agricultural land under different mitigation practices for the next decades under different climate scenarios. The ECOSSE model was developed to simulate soil C dynamics and GHG emissions in mineral and organic soils. A spatial version of the model (GlobalECOSSE) was adapted to simulate agricultural soils around the world to calculate the SOC change under changing management and climate.</p><p>Practices like different tillage management, crop rotations and residue incorporation showed regional differences and the importance of adapting mitigation practices under an increased changing climate. A fast adoption of practices that increase SOC has its own challenges, as the potential to sequester C is high until the soil reached a new C equilibrium. Therefore, the potential to use soil C sequestration to reduce overall GHG emissions is limited. The results showed a high potential to sequester C until 2050 but much lower rates in the second half of the century, highlighting the importance of using soil C sequestration in the coming decades to reach net zero by 2050.</p>


2021 ◽  
Author(s):  
Darija Bilandžija ◽  
Marija Galić ◽  
Željka Zgorelec

<p>In order to mitigate climate change and reduce the anthropogenic greenhouse gas (GHG) emissions, the Kyoto protocol has been adopted in 1997 and the Paris Agreement entered into force in 2016. The Paris Agreement have ratified 190 out of 197 Parties of the United Nations Framework Convention on Climate Change (UNFCCC) and Croatia is one of them as well. Each Party has obliged regularly to submit the national inventory report (NIR) providing the information on the national anthropogenic GHG emissions by sources and removals by sinks to the UNFCCC. Reporting under the NIR is divided into six categories / sectors, and one of them is land use, land use change and forestry (LULUCF) sector, where an issue of uncertainty estimates on carbon emissions and removals occurs. As soil respiration represents the second-largest terrestrial carbon flux, the national studies on soil respiration can reduce the uncertainty and improve the estimation of country-level carbon fluxes. Due to the omission of national data, the members of the University of Zagreb Faculty of Agriculture, Department of General Agronomy have started to study soil respiration rates in 2012, and since then many different studies on soil respiration under different agricultural land uses (i.e. annual crops, energy crop and vineyard), management practices (i.e. tillage and fertilization) and climate conditions (i.e. continental and mediterranean) in Croatia have been conducted. The obtained site specific results on field measurements of soil carbon dioxide concentrations by <em>in situ</em> closed static chamber method will be presented in this paper.</p>


2021 ◽  
Author(s):  
Alexander Pardy

Freshwater eutrophication typically driven by non-point source phosphorus pollution is one of the worlds’ most prevalent and vexing environmental problems with the Laurentian Great Lakes on the Canada – United States border. During 1975 – 1977, the Pollution from Land Use Activities Reference Group examined eleven agricultural watersheds in order to investigate the impacts of land use activities on surface water quality. This study examined how agricultural land use and management has transformed in two watersheds, Nissouri Creek and Big Creek. The goal of this study was to quantify the phosphorus mass balance change within the watersheds. During 2015 – 2019 land use and management practices survey data was collected. Results of this study showed Nissouri Creek is now depleting -2.19 kilograms of phosphorus per hectare of agricultural land, while Big Creek is still accumulating 4.77 kilograms of phosphorus per hectare of agricultural land. This study can guide efforts to limit the long-term losses of phosphorus in the Laurentian Great Lakes and elsewhere.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
D. L. D. Panditharathne ◽  
N. S. Abeysingha ◽  
K. G. S. Nirmanee ◽  
Ananda Mallawatantri

Soil erosion is one of the main forms of land degradation. Erosion contributes to loss of agricultural land productivity and ecological and esthetic values of natural environment, and it impairs the production of safe drinking water and hydroenergy production. Thus, assessment of soil erosion and identifying the lands more prone to erosion are vital for erosion management process. Revised Universal Soil Loss Equation (Rusle) model supported by a GIS system was used to assess the spatial variability of erosion occurring at Kalu Ganga river basin in Sri Lanka. Digital Elevation Model (30 × 30 m), twenty years’ rainfall data measured at 11 rain gauge stations across the basin, land use and soil maps, and published literature were used as inputs to the model. The average annual soil loss in Kalu Ganga river basin varied from 0 to 134 t ha−1 year−1 and mean annual soil loss was estimated at 0.63 t ha−1 year−1. Based on erosion estimates, the basin landscape was divided into four different erosion severity classes: very low, low, moderate, and high. About 1.68% of the areas (4714 ha) in the river basin were identified with moderate to high erosion severity (>5 t ha−1 year−1) class which urgently need measures to control soil erosion. Lands with moderate to high soil erosion classes were mostly found in Bulathsinghala, Kuruwita, and Rathnapura divisional secretarial divisions. Use of the erosion severity information coupled with basin wide individual RUSLE parameters can help to design the appropriate land use management practices and improved management based on the observations to minimize soil erosion in the basin.


2020 ◽  
Vol 12 (23) ◽  
pp. 10134
Author(s):  
Shouqiang Yin ◽  
Jing Li ◽  
Jiaxin Liang ◽  
Kejing Jia ◽  
Zhen Yang ◽  
...  

This study was aimed at optimizing the weighted linear combination method (WLC) for agricultural land suitability evaluation (ALSE) through indicator selection, weight determination, and classification of overall suitability scores in Handan, China. Handan is a representative research area with distinct agricultural advantages and regional differences in land use, where the expansion of construction land has led to a rapid decrease of agricultural land in recent years. Natural factors (topography, climate, soil conditions, and vegetation cover) and socioeconomic factors (land use and spatial accessibility) were selected to establish a more comprehensive evaluation system. The index weight was calculated by the mutual information between index suitability and current land use. The consistency index was used to identify the boundary value dividing the overall suitability score into a suitable category and unsuitable category in each sub-region. The results demonstrated that the optimized WLC-ALSE model outperformed the comparison models using conventional methods in terms of the consistency between the evaluation results and current land use. Owing to the increasing limitations of topography, soil conditions, spatial accessibility, and land use, the proportions of suitable land in Zone 1, Zone 2, and Zone 3 were 77.4%, 67.5%, and 30.9%, respectively. The agricultural land unsuitable for agriculture (14.5%) was less than non-agricultural land suitable for agriculture (7.4%), indicating that agricultural land had low growth potential in Handan. Finally, specific recommendations were made to improve agricultural land suitability, alleviate land use conflicts, and further optimize the model. The results can provide effective guidance for WLC-ALSE and land use decision-making for sustainable agriculture.


2020 ◽  
Vol 39 (2) ◽  
pp. 159-173
Author(s):  
Rastislav Skalský ◽  
Štefan Koco ◽  
Gabriela Barančíková ◽  
Zuzana Tarasovičová ◽  
Ján Halas ◽  
...  

AbstractSoil organic carbon (SOC) in agricultural land forms part of the global terrestrial carbon cycle and it affects atmospheric carbon dioxide balance. SOC is sensitive to local agricultural management practices that sum up into regional SOC storage dynamics. Understanding regional carbon emission and sequestration trends is, therefore, important in formulating and implementing climate change adaptation and mitigation policies. In this study, the estimation of SOC stock and regional storage dynamics in the Ondavská Vrchovina region (North-Eastern Slovakia) cropland and grassland topsoil between 1970 and 2013 was performed with the RothC model and gridded spatial data on weather, initial SOC stock and historical land cover and land use changes. Initial SOC stock in the 0.3-m topsoil layer was estimated at 38.4 t ha−1 in 1970. The 2013 simulated value was 49.2 t ha−1, and the 1993–2013 simulated SOC stock values were within the measured data range. The total SOC storage in the study area, cropland and grassland areas, was 4.21 Mt in 1970 and 5.16 Mt in 2013, and this 0.95 Mt net SOC gain was attributed to inter-conversions of cropland and grassland areas between 1970 and 2013, which caused different organic carbon inputs to the soil during the simulation period with a strong effect on SOC stock temporal dynamics.


Author(s):  
Masila Samson Muloo ◽  
Kauti Matheaus Kioko ◽  
Kimiti Jacinta M.

The aim of this study was to investigate the effects of land degradation on agricultural land use, planning and management in Kalama Division, Machakos County; and specifically determined farmers’ considerations of land suitability for selected types of agricultural land uses in varying cropping zones, investigated farmers’ local environmental knowledge of land degradation indicators and finally documented farmers’ land management strategies and practices for soil and water conservation. Data was collected using a questionnaire, along a road transect cutting across upper, middle and lower zones (parts) of a slope. A total of 40 households along the transect on the three zones were interviewed. Results obtained revealed that crop farming, livestock, poultry, farm forestry and bee keeping were the major agricultural land use activities carried out in the study area. Overall, steep slope was the most important factor considered for farm forestry (17%) (5.29 STDEV). Bee farming was the least land use practice accounting for only 1% of total land use. Most land degradation (15%) was reported in the middle zone while lowest land degradation (7%) was reported in the upper zone. The study found out that most households were aware of land degradation indicators in their local environment and described them using their indigenous environmental knowledge. The smallholder farmers prevented further land degradation by use of their local or traditional ways such as application of organic manure, planting of trees, crop rotation, use of gabions and stone lines. Different zones had different land use and management practices due to differences in terrain and other physical and biophysical characteristics. Overall, the major land management practices included tree planting (23%) (4.04 STDEV) and water conservation and gabion making (10%) (2.52 STDEV). This study clearly established an existence of smallholder farmers’ indigenous knowledge, perceptions, and beliefs of the local environmental factors of land condition which are necessary for the farmer’s decision-making on land use planning and management. On the basis of these findings, the study argues for place-based analysis and understanding of the landscape structure and local micro-environments in enhancing understanding of local-level decision-making on land use planning and management by smallholder farmers in maintaining livelihood security. Even though the study is limited to the local scope, it can provide a basis for designing policies aimed at rural livelihood security improvement and inform and facilitate targeting of outside interventions such as land use planning and management programs which can be built on existing indigenous knowledge.


Author(s):  
M. B. Hossain

The objective of this paper is to formulate suitable policies and management practices that can firmly reduce CO2–C (carbon dioxide –carbon) emissions and sequester it in a sustainable way. Land use and management practices can influence both efflux and influx of carbon between soil and the atmosphere. Organic matter dynamics and nutrient cycling in the soil are closely related to nutrient immobilization and mineralization. Unplanned conversion of lands to agricultural production causes a sharp decrease in carbon stored in soil. In the atmosphere, 4.0 Gt C yr-1 is enriched by different sources. Increasing soil organic carbon (SOC) improves soil health and mitigate climate change. Histosol, clayey and fine particle size have good capacity to sequestrate C in soil. Land use pattern controls organic matter status in soil. Crop/grass, forestry/agroforestry, reduced tillage, quality of organic matter, soil biotic - abiotic are the major factors to sequestrate significant C in soil. The application of fertilizers especially nitrogen usually results in an increase in crop growth as well as a corresponding increase in root development takes place for building up active organicmatter in soil. Biochar amendments can impact soil C storage and net CO2 removals from the atmosphere in three different ways such as longer residence time due to resistant to microbial decay, plant productivity and reduce N2O emission. Wetland soil, effective management practices and control deforestation sequestrate 0.2, 2.0 and 1.6 Gt C yr-1, respectively. Based on these information, it is possible to increase 4‰ carbon a year the quantity of carbon contained in soils at 0-40 cm soil depth to halt carbon dioxide enrichment (4.0 Gt C yr-1) in the atmosphere.


Sign in / Sign up

Export Citation Format

Share Document