scholarly journals Viable Disposal of Post-Consumer Polymers in Mexico: A Review

2021 ◽  
Vol 9 ◽  
Author(s):  
L.A. Ángeles-Hurtado ◽  
Juvenal Rodríguez-Reséndiz ◽  
Sebastián Salazar-Colores ◽  
Hugo Torres-Salinas ◽  
P. Y. Sevilla-Camacho

Post-consumer polymers require viable actions to transfer value to the final consumer to reduce environmental impact. Worldwide, initiatives are being developed to promote the culture of recycling and thus reduce waste generation. These initiatives seek to make the work of thousands of people visible, encourage job creation, and promote businesses through incentive schemes for effective separation, collection, classification, reuse, and recycling, in the hands of consumers, collectors, and scavenges. It is necessary to emphasize that Mexico needs to develop techniques to increase the productivity of collection centers for recyclable materials and to face the challenges that recycling implies. For these reasons, the Mexican government has spoken of waste management as a national priority due to the COVID-19 pandemic, which increased urban solid waste between 3.3 % and 16.5 % in addition to what was generated under normal conditions. Also, the recycling chain provides economic income to more than 35 thousand Mexicans. Polyethylene terephthalate (PET) is an example of the most notable circular economy in Mexico because 60 % of PET bottles are recycled. Therefore, this article addresses the methods and systems in the management of urban solid waste. It focuses on post-consumer recycled plastic bottles to provide an overview of cost-effective strategies for designing and developing an affordable sorting system in Mexico from the academic field. In addition, to simplify the solution that we propose, it is recommended to combine optical techniques such as infrared spectroscopy and Raman spectroscopy with others methods that work together, such as computer vision, to develop affordable systems that address the limitations of mechanical systems.

Author(s):  
Neeraj Kumar Ahirwar

The problem of urban solid waste management is regarded as one of the most important environmental issues, especially in developing countries. Municipalities all around the world are dealing with increasing levels of solid garbage and need to devise effective strategies to tackle the problem. It is critical to understand the amount of garbage created and the makeup of the waste stream in order to develop successful waste management in any location. Many research have established that the amount of waste generated is proportional to the population. There are several other factors which affect the amount and composition of waste. The enormous increase in solid waste generation particularly in large cities will have significant impact in terms of the land required for waste disposal


1998 ◽  
Vol 37 (3) ◽  
pp. 241-247 ◽  
Author(s):  
Peter Gerdes ◽  
Sabine Kunst

The bioavailability of phosphorus from different sources has been evaluated in the catchment area of the River Ilmenau (Lower-Saxony, Germany) by using algal assays. The P bioavailability describes the different potential of P from various sources of supporting eutrophication. Effluents from sewage treatment plants were highly bioavailable (72% of TP) whereas rainwater (26%) and erosion effluents (30%) showed a low bioavailability. In order to develop effective strategies to minimize P inputs into the river, source specific P bioavailability indices were determined and combined with a P balance to calculate inputs of vioavailable P (BAP) instead of total P (TP). It could be shown that the relative importance of the different P sources changes when applying BAP. Measures to reduce P inputs into the River Ilmenau will take P bioavailability into consideration and therefore lead to a more cost-effective management.


Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1072
Author(s):  
Raquel Cid ◽  
Jorge Bolívar

To date, vaccination has become one of the most effective strategies to control and reduce infectious diseases, preventing millions of deaths worldwide. The earliest vaccines were developed as live-attenuated or inactivated pathogens, and, although they still represent the most extended human vaccine types, they also face some issues, such as the potential to revert to a pathogenic form of live-attenuated formulations or the weaker immune response associated with inactivated vaccines. Advances in genetic engineering have enabled improvements in vaccine design and strategies, such as recombinant subunit vaccines, have emerged, expanding the number of diseases that can be prevented. Moreover, antigen display systems such as VLPs or those designed by nanotechnology have improved the efficacy of subunit vaccines. Platforms for the production of recombinant vaccines have also evolved from the first hosts, Escherichia coli and Saccharomyces cerevisiae, to insect or mammalian cells. Traditional bacterial and yeast systems have been improved by engineering and new systems based on plants or insect larvae have emerged as alternative, low-cost platforms. Vaccine development is still time-consuming and costly, and alternative systems that can offer cost-effective and faster processes are demanding to address infectious diseases that still do not have a treatment and to face possible future pandemics.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1051
Author(s):  
Jonattan Gallegos-Catalán ◽  
Zachary Warnken ◽  
Tania F. Bahamondez-Canas ◽  
Daniel Moraga-Espinoza

Orally inhaled drug products (OIDPs) are an important group of medicines traditionally used to treat pulmonary diseases. Over the past decade, this trend has broadened, increasing their use in other conditions such as diabetes, expanding the interest in this administration route. Thus, the bioequivalence of OIDPs is more important than ever, aiming to increase access to affordable, safe and effective medicines, which translates into better public health policies. However, regulatory agencies leading the bioequivalence process are still deciding the best approach for ensuring a proposed inhalable product is bioequivalent. This lack of agreement translates into less cost-effective strategies to determine bioequivalence, discouraging innovation in this field. The Next-Generation Impactor (NGI) is an example of the slow pace at which the inhalation field evolves. The NGI was officially implemented in 2003, being the last equipment innovation for OIDP characterization. Even though it was a breakthrough in the field, it did not solve other deficiencies of the BE process such as dissolution rate analysis on physiologically relevant conditions, being the last attempt of transferring technology into the field. This review aims to reveal the steps required for innovation in the regulations defining the bioequivalence of OIDPs, elucidating the pitfalls of implementing new technologies in the current standards. To do so, we collected the opinion of experts from the literature to explain these trends, showing, for the first time, the stakeholders of the OIDP market. This review analyzes the stakeholders involved in the development, improvement and implementation of methodologies that can help assess bioequivalence between OIDPs. Additionally, it presents a list of methods potentially useful to overcome some of the current limitations of the bioequivalence standard methodologies. Finally, we review one of the most revolutionary approaches, the inhaled Biopharmaceutical Classification System (IBCs), which can help establish priorities and order in both the innovation process and in regulations for OIDPs.


2020 ◽  
Vol 6 ◽  
pp. 351-357
Author(s):  
H.I. Romero ◽  
C. Vega ◽  
V. Feijoó ◽  
D. Villacreses ◽  
C. Sarmiento

2021 ◽  
Vol 43 (1) ◽  
pp. 4-7
Author(s):  
Linda J. Johnston ◽  
Norma Gonzalez-Rojano ◽  
Kevin J. Wilkinson ◽  
Baoshan Xing

Abstract Nanotechnology has developed rapidly in the last two decades with significant effort focused on the development of nano-enabled materials with new or improved properties that offer solutions for current world challenges. The commercialization of products containing engineered nanomaterials (ENM) has progressed much more rapidly than the development of practical approaches to ensure their safe and sustainable use. The lack of adequate detection and characterization techniques and reproducible and validated methods for toxicological studies have been identified as major limitations. The rapid development of ENM of increasing complexity and diversity and concerns over the adequacy of existing regulations also contribute to safety concerns with these materials. The full potential of nanotechnology can only be realized when feasible, cost-effective strategies to ensure a safe-by-design approach, effective risk assessment approaches and appropriate regulatory guidelines are in place.


Author(s):  
Julio César Puche-Regaliza ◽  
Santiago Porras-Alfonso ◽  
Alfredo Jiménez ◽  
Santiago Aparicio-Castillo ◽  
Pablo Arranz-Val

2017 ◽  
Vol 44 (1) ◽  
pp. 11-17 ◽  
Author(s):  
E. Charles Osterberg ◽  
Gregory Murphy ◽  
Catherine R. Harris ◽  
Benjamin N. Breyer

Sign in / Sign up

Export Citation Format

Share Document