next generation impactor
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 9)

H-INDEX

5
(FIVE YEARS 0)

Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1988
Author(s):  
Beatriz Arauzo ◽  
Tania B. Lopez-Mendez ◽  
Maria Pilar Lobera ◽  
Javier Calzada-Funes ◽  
Jose Luis Pedraz ◽  
...  

Inhalation therapy offers several advantages in respiratory disease treatment. Azithromycin is a macrolide antibiotic with poor solubility and bioavailability but with a high potential to be used to fight lung infections. The main objective of this study was to generate a new inhalable dry powder azithromycin formulation. To this end, an electrospray was used, yielding a particle size around 2.5 µm, which is considered suitable to achieve total deposition in the respiratory system. The physicochemical properties and morphology of the obtained microparticles were analysed with a battery of characterization techniques. In vitro deposition assays were evaluated after aerosolization of the powder at constant flow rate (100 L/min) and the consideration of the simulation of two different realistic breathing profiles (healthy and chronic obstructive pulmonary disease (COPD) patients) into a next generation impactor (NGI). The formulation was effective in vitro against two types of bacteria, Staphylococcus aureus and Pseudomonas aeruginosa. Finally, the particles were biocompatible, as evidenced by tests on the alveolar cell line (A549) and bronchial cell line (Calu-3).


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1300
Author(s):  
Luca Casula ◽  
Francesco Lai ◽  
Elena Pini ◽  
Donatella Valenti ◽  
Chiara Sinico ◽  
...  

Curcumin has shown a potential extraordinary activity as an add-on ingredient in asthma treatment, due to its immunomodulatory and anti-inflammatory mechanism of action. However, its low water solubility and bioavailability lead to a poor therapeutic effect, which can be overcome by its formulation as nanocrystals. The aim of this study was to prepare a multicomponent formulation for the delivery of curcumin (CUR) and beclomethasone dipropionate (BDP) into the lungs as water-based nanosuspensions (NS). Single component formulations (CUR-NS, BDP-NS) and a multicomponent formulation (CUR+BDP-NS) were prepared through a wet ball media milling technique, using P188 as a non-toxic stabilizer. Characterization was carried out in terms of size, size distribution, zeta potential, nanocrystals morphology, and solid-state properties. Moreover, the inhalation delivery efficiency was studied with Next Generation Impactor (NGI, Apparatus E Ph. Eu). CUR-NS was optimized and showed a long-term stability and improved nanocrystals apparent solubility. The three formulations exhibited a nanocrystal mean diameter in the range of 200–240 nm and a homogenous particle size distribution. Aggregation or sedimentation phenomena were not observed in the multicomponent formulation on 90 days storage at room temperature. Finally, the nebulization tests of the three samples showed optimal aerodynamic parameters and MMAD < 5 µm.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1254
Author(s):  
Mohammad A. M. Momin ◽  
Bishal Raj Adhikari ◽  
Shubhra Sinha ◽  
Ian Larson ◽  
Shyamal C. Das

Roflumilast is currently administered orally to control acute exacerbations in chronic obstructive pulmonary disease (COPD). However, side effects such as gastrointestinal disturbance and weight loss have limited its application. This work aimed to develop an inhalable roflumilast formulation to reduce the dose and potentially circumvent the associated toxicity. Roflumilast was cospray-dried with trehalose and L-leucine with varied feed concentrations and spray-gas flow rates to produce the desired dry powder. A Next-Generation Impactor (NGI) was used to assess the aerosolization efficiency. In addition, different devices (Aerolizer, Rotahaler, and Handihaler) and flow rates were used to investigate their effects on the aerosolization efficiency. A cytotoxicity assay was also performed. The powders produced under optimized conditions were partially amorphous and had low moisture content. The powders showed good dispersibility, as evident by the high emitted dose (>88%) and fine particle fraction (>52%). At all flow rates (≥30 L/min), the Aerolizer offered the best aerosolization. The formulation exhibited stable aerosolization after storage at 25 °C / 15% Relative Humidity (RH) for one month. Moreover, the formulation was non-toxic to alveolar basal epithelial cells. A potential inhalable roflumilast formulation including L-leucine and trehalose has been developed for the treatment of COPD. This study also suggests that the choice of device is crucial to achieve the desired aerosol performance.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1051
Author(s):  
Jonattan Gallegos-Catalán ◽  
Zachary Warnken ◽  
Tania F. Bahamondez-Canas ◽  
Daniel Moraga-Espinoza

Orally inhaled drug products (OIDPs) are an important group of medicines traditionally used to treat pulmonary diseases. Over the past decade, this trend has broadened, increasing their use in other conditions such as diabetes, expanding the interest in this administration route. Thus, the bioequivalence of OIDPs is more important than ever, aiming to increase access to affordable, safe and effective medicines, which translates into better public health policies. However, regulatory agencies leading the bioequivalence process are still deciding the best approach for ensuring a proposed inhalable product is bioequivalent. This lack of agreement translates into less cost-effective strategies to determine bioequivalence, discouraging innovation in this field. The Next-Generation Impactor (NGI) is an example of the slow pace at which the inhalation field evolves. The NGI was officially implemented in 2003, being the last equipment innovation for OIDP characterization. Even though it was a breakthrough in the field, it did not solve other deficiencies of the BE process such as dissolution rate analysis on physiologically relevant conditions, being the last attempt of transferring technology into the field. This review aims to reveal the steps required for innovation in the regulations defining the bioequivalence of OIDPs, elucidating the pitfalls of implementing new technologies in the current standards. To do so, we collected the opinion of experts from the literature to explain these trends, showing, for the first time, the stakeholders of the OIDP market. This review analyzes the stakeholders involved in the development, improvement and implementation of methodologies that can help assess bioequivalence between OIDPs. Additionally, it presents a list of methods potentially useful to overcome some of the current limitations of the bioequivalence standard methodologies. Finally, we review one of the most revolutionary approaches, the inhaled Biopharmaceutical Classification System (IBCs), which can help establish priorities and order in both the innovation process and in regulations for OIDPs.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 850
Author(s):  
Maria Letizia Manca ◽  
Maria Ferraro ◽  
Elisabetta Pace ◽  
Serena Di Vincenzo ◽  
Donatella Valenti ◽  
...  

In this work beclomethasone dipropionate was loaded into liposomes and hyalurosomes modified with mucin to improve the ability of the payload to counteract the oxidative stress and involved damages caused by cigarette smoke in the airway. The vesicles were prepared by dispersing all components in the appropriate vehicle and sonicating them, thus avoiding the use of organic solvents. Unilamellar and bilamellar vesicles small in size (~117 nm), homogeneously dispersed (polydispersity index lower than 0.22) and negatively charged (~−11 mV), were obtained. Moreover, these vesicle dispersions were stable for five months at room temperature (~25 °C). In vitro studies performed using the Next Generation Impactor confirmed the suitability of the formulations to be nebulized as they were capable of reaching the last stages of the impactor that mimic the deeper airways, thus improving the deposition of beclomethasone in the target site. Further, biocompatibility studies performed by using 16HBE bronchial epithelial cells confirmed the high biocompatibility and safety of all the vesicles. Among the tested formulations, only mucin-hyalurosomes were capable of effectively counteracting the production of reactive oxygen species (ROS) induced by cigarette smoke extract, suggesting that this formulation may represent a promising tool to reduce the damaging effects of cigarette smoke in the lung tissues, thus reducing the pathogenesis of cigarette smoke-associated diseases such as chronic obstructive pulmonary disease, emphysema, and cancer.


2021 ◽  
Author(s):  
Jelisaveta Ignjatović ◽  
◽  
Tijana Šušteršič ◽  
Sandra Cvijić ◽  
Aleksandar Bodić ◽  
...  

Computational fluid dynamics (CFD) coupled with discrete phase modeling (DPM) appeared as an alternative approach to the commonly used in vitro methods for the assessment of dry powders for inhalation (DPI) aerodynamic properties. The aim of this study was to compare the parameters that describe DPI aerodynamic performance, obtained computationally by CFD-DPM and in vitro by next generation impactor (NGI). The analyzed parameters included: emitted fraction (EF), fine particle fraction (FPF), mass median aerodynamic diameter (MMAD) and geometric standard deviation (GSD). The results showed that CFD-DPM simulated EF values were generally comparable to the NGI obtained values, but there were some differences between the results obtained by these two methods. On the other hand, CFD-DPM predicted MMAD values were almost twice bigger than the NGI determined values, while the predicted GSD values were lower than NGI obtained values. In addition, CFD-DPM predicted values indicated larger differences between MMAD for different formulations in comparison to the NGI results. The largest difference between CFD-DPM and NGI results was observed for FPF values. Namely, CFD-DPM predicted FPF values were markedly lower than the NGI determined values for four of five tested formulations. Overall, although the designed CFD-DPM model and NGI measurements provided comparable data on the DPI EF values, the other relevant parameters obtained by these two approaches largely diverged indicating the need for further refinement of computational models to fully capture DPI aerodynamic performance.


Sign in / Sign up

Export Citation Format

Share Document