scholarly journals Challenges for Evaluation of the Safety of Engineered Nanomaterials

2021 ◽  
Vol 43 (1) ◽  
pp. 4-7
Author(s):  
Linda J. Johnston ◽  
Norma Gonzalez-Rojano ◽  
Kevin J. Wilkinson ◽  
Baoshan Xing

Abstract Nanotechnology has developed rapidly in the last two decades with significant effort focused on the development of nano-enabled materials with new or improved properties that offer solutions for current world challenges. The commercialization of products containing engineered nanomaterials (ENM) has progressed much more rapidly than the development of practical approaches to ensure their safe and sustainable use. The lack of adequate detection and characterization techniques and reproducible and validated methods for toxicological studies have been identified as major limitations. The rapid development of ENM of increasing complexity and diversity and concerns over the adequacy of existing regulations also contribute to safety concerns with these materials. The full potential of nanotechnology can only be realized when feasible, cost-effective strategies to ensure a safe-by-design approach, effective risk assessment approaches and appropriate regulatory guidelines are in place.

2014 ◽  
Vol 2014 ◽  
pp. 1-28 ◽  
Author(s):  
Farzad Aslani ◽  
Samira Bagheri ◽  
Nurhidayatullaili Muhd Julkapli ◽  
Abdul Shukor Juraimi ◽  
Farahnaz Sadat Golestan Hashemi ◽  
...  

Rapid development and wide applications of nanotechnology brought about a significant increment on the number of engineered nanomaterials (ENs) inevitably entering our living system. Plants comprise of a very important living component of the terrestrial ecosystem. Studies on the influence of engineered nanomaterials (carbon and metal/metal oxides based) on plant growth indicated that in the excess content, engineered nanomaterials influences seed germination. It assessed the shoot-to-root ratio and the growth of the seedlings. From the toxicological studies to date, certain types of engineered nanomaterials can be toxic once they are not bound to a substrate or if they are freely circulating in living systems. It is assumed that the different types of engineered nanomaterials affect the different routes, behavior, and the capability of the plants. Furthermore, different, or even opposing conclusions, have been drawn from most studies on the interactions between engineered nanomaterials with plants. Therefore, this paper comprehensively reviews the studies on the different types of engineered nanomaterials and their interactions with different plant species, including the phytotoxicity, uptakes, and translocation of engineered nanomaterials by the plant at the whole plant and cellular level.


1998 ◽  
Vol 37 (3) ◽  
pp. 241-247 ◽  
Author(s):  
Peter Gerdes ◽  
Sabine Kunst

The bioavailability of phosphorus from different sources has been evaluated in the catchment area of the River Ilmenau (Lower-Saxony, Germany) by using algal assays. The P bioavailability describes the different potential of P from various sources of supporting eutrophication. Effluents from sewage treatment plants were highly bioavailable (72% of TP) whereas rainwater (26%) and erosion effluents (30%) showed a low bioavailability. In order to develop effective strategies to minimize P inputs into the river, source specific P bioavailability indices were determined and combined with a P balance to calculate inputs of vioavailable P (BAP) instead of total P (TP). It could be shown that the relative importance of the different P sources changes when applying BAP. Measures to reduce P inputs into the River Ilmenau will take P bioavailability into consideration and therefore lead to a more cost-effective management.


Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1072
Author(s):  
Raquel Cid ◽  
Jorge Bolívar

To date, vaccination has become one of the most effective strategies to control and reduce infectious diseases, preventing millions of deaths worldwide. The earliest vaccines were developed as live-attenuated or inactivated pathogens, and, although they still represent the most extended human vaccine types, they also face some issues, such as the potential to revert to a pathogenic form of live-attenuated formulations or the weaker immune response associated with inactivated vaccines. Advances in genetic engineering have enabled improvements in vaccine design and strategies, such as recombinant subunit vaccines, have emerged, expanding the number of diseases that can be prevented. Moreover, antigen display systems such as VLPs or those designed by nanotechnology have improved the efficacy of subunit vaccines. Platforms for the production of recombinant vaccines have also evolved from the first hosts, Escherichia coli and Saccharomyces cerevisiae, to insect or mammalian cells. Traditional bacterial and yeast systems have been improved by engineering and new systems based on plants or insect larvae have emerged as alternative, low-cost platforms. Vaccine development is still time-consuming and costly, and alternative systems that can offer cost-effective and faster processes are demanding to address infectious diseases that still do not have a treatment and to face possible future pandemics.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1051
Author(s):  
Jonattan Gallegos-Catalán ◽  
Zachary Warnken ◽  
Tania F. Bahamondez-Canas ◽  
Daniel Moraga-Espinoza

Orally inhaled drug products (OIDPs) are an important group of medicines traditionally used to treat pulmonary diseases. Over the past decade, this trend has broadened, increasing their use in other conditions such as diabetes, expanding the interest in this administration route. Thus, the bioequivalence of OIDPs is more important than ever, aiming to increase access to affordable, safe and effective medicines, which translates into better public health policies. However, regulatory agencies leading the bioequivalence process are still deciding the best approach for ensuring a proposed inhalable product is bioequivalent. This lack of agreement translates into less cost-effective strategies to determine bioequivalence, discouraging innovation in this field. The Next-Generation Impactor (NGI) is an example of the slow pace at which the inhalation field evolves. The NGI was officially implemented in 2003, being the last equipment innovation for OIDP characterization. Even though it was a breakthrough in the field, it did not solve other deficiencies of the BE process such as dissolution rate analysis on physiologically relevant conditions, being the last attempt of transferring technology into the field. This review aims to reveal the steps required for innovation in the regulations defining the bioequivalence of OIDPs, elucidating the pitfalls of implementing new technologies in the current standards. To do so, we collected the opinion of experts from the literature to explain these trends, showing, for the first time, the stakeholders of the OIDP market. This review analyzes the stakeholders involved in the development, improvement and implementation of methodologies that can help assess bioequivalence between OIDPs. Additionally, it presents a list of methods potentially useful to overcome some of the current limitations of the bioequivalence standard methodologies. Finally, we review one of the most revolutionary approaches, the inhaled Biopharmaceutical Classification System (IBCs), which can help establish priorities and order in both the innovation process and in regulations for OIDPs.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 590
Author(s):  
Fernando V. Lima ◽  
Gerardo J. Ruiz-Mercado

The growing worldwide demand for energy and resources, combined with the stringent environmental challenges and regulations, means that the efficient, cost-effective, and sustainable use of energy and material sources, including bio-based, has become increasingly important [...]


2005 ◽  
Vol 3 (2) ◽  
pp. 199-205 ◽  
Author(s):  
Luiz Claudio Di Stasi

An integrated and interdisciplinary research programme with native medicinal plants from tropical forests has been performed in order to obtain new forest products for sustainable use in regional markets vis-à-vis ecosystem conservation. For the success of this programme ethnopharmacological studies are very important with respect to (i) identification of useful plants including medicinal and aromatic species; (ii) recuperation and preservation of traditional knowledge about native plants; and (iii) identification of potential plants with economic value. The plants are selected with a view to evaluate efficacy and safety (pharmacological and toxicological studies), and phytochemical profile and quality control (phytochemical and chromatographic characterization). These studies are very important to add value to plant products and also to mitigate unscrupulous exploitation of medicinal plants by local communities, since multiple use of plants represents an excellent strategy for sustaining the tropical ecosystem through ex situ and in situ conservation. Thus, conservation of tropical resources is possible in conjunction with improvements in the quality of life of the traditional communities and production of new products with therapeutic, cosmetic and ‘cosmeceutic’ value.


2017 ◽  
Vol 44 (1) ◽  
pp. 11-17 ◽  
Author(s):  
E. Charles Osterberg ◽  
Gregory Murphy ◽  
Catherine R. Harris ◽  
Benjamin N. Breyer

Synthesis ◽  
2021 ◽  
Author(s):  
Yang Xiong ◽  
Sijia Li ◽  
Haijing Xiao ◽  
Guozhu Zhang

In recent years, visible-light-mediated copper photocatalysis have emerged as an attractive strategy for the diverse constructions of basic bonds in an ecologically benign and cost-effective fashion. The intense activity and increasing work of these areas stimulated the exploit of the distinctive properties of copper photocatalysis and the rapid development and expansion of their applications. In this review, we focus on introducing a series of significant achievements in copper complexes as standalone photocatalysis in organic reactions to make an attempt to exhibit their potential capabilities and high flexibilities in synthetic chemistry.


2012 ◽  
Vol 598 ◽  
pp. 273-278
Author(s):  
Zhao Gao ◽  
Yue Wu

The landscape design of resort is in the pressing need of implementing ecological idea with which it can be authentically established as the result of sustainable development involving people-oriented idea. The rapid development plus the reasonable application of landscape ecology provide the theoretical basis for the construction of ecotypic resort. Employing the theory of landscape ecology to instruct the landscape construction of resort may guarantee the sustainable use of its resources. The paper explores the fundamental theories and approaches of eco-design of resort landscape with the case of Yangmei Island Resort and elaborates the dominant ecotype idea in the process of designing the resort landscape to practically put the people-oriented idea into effect, aiming at creating a harmonious landscape and optimizing the resort landscape.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4543
Author(s):  
Michael Spiegel ◽  
Eric Veith ◽  
Thomas Strasser

Multi-microgrids address the need for a resilient, sustainable, and cost-effective electricity supply by providing a coordinated operation of individual networks. Due to local generation, dynamic network topologies, and islanding capabilities of hosted microgrids or groups thereof, various new fault mitigation and optimization options emerge. However, with the great flexibility, new challenges such as complex failure modes that need to be considered for a resilient operation, appear. This work systematically reviews scheduling approaches which significantly influence the feasibility of mitigation options before a failure is encountered. An in-depth analysis of identified key contributions covers aspects such as the mathematical apparatus, failure models and validation to highlight the current methodical spectrum and to identify future perspectives. Despite the common optimization-based framework, a broad variety of scheduling approaches is revealed. However, none of the key contributions provides practical insights beyond lab validation and considerable effort is required until the approaches can show their full potential in practical implementations. It is expected that the great level of detail guides further research in improving and validating existing scheduling concepts as well as it, in the long run, aids engineers to choose the most suitable options regarding increasingly resilient power systems.


Sign in / Sign up

Export Citation Format

Share Document