scholarly journals Assessment of Soil Health Indicators Under the Influence of Nanocompounds and Bacillus spp. in Field Condition

2022 ◽  
Vol 9 ◽  
Author(s):  
Parul Chaudhary ◽  
Anuj Chaudhary ◽  
Pankaj Bhatt ◽  
Govind Kumar ◽  
Hina Khatoon ◽  
...  

Agricultural yield of major crops is low due to the injudicious use of chemical fertilizers that affects soil fertility and biodiversity severely and thereby affecting plant growth. Soil health is regulated by various factors such as physicochemical properties of the soil, availability of micro/macronutrients, soil health indicator enzymes and microbial diversity which are essential for agriculture productivity. Thus, it is required to draw attention towards an eco-friendly approach that protects the beneficial microbial population of soil. Application of different bioinoculants and agriusable nanocompounds has been reported to enhance soil quality with increased nutrient status and beneficial bacterial population, but additive effects of combined treatments on soil microbial population are largely unknown. The present study investigated the impact of nanozeolite and nanochitosan along with two Bacillus spp. on rhizospheric microbial flora and indicator enzymes to signify soil health under field conditions on maize. Soil health was ascertained by evaluating physicochemical analysis; total bacterial counts including N, P, and K solubilizing bacteria; and soil health indicator enzymes like fluorescein diacetate hydrolysis, alkaline phosphatase, β-glucosidase, dehydrogenase, amylase, and arylesterase. Change in copy number of 16S rRNA as a marker gene was used to quantify the bacterial population using quantitative PCR (qPCR) in different treatments. Our study revealed that nanocompounds with Bacillus spp. significantly (p < 0.05) enhanced total microbial count (16.89%), NPK solubilizing bacteria (46%, 41.37%, and 57.14%), and the level of soil health indicator enzymes up to twofold over control after 20, 40, and 60 days of the experiment. qPCR analysis showed a higher copy number of the 16S rRNA gene in treated samples, which also indicates a positive impact on soil bacterial population. This study presents a valuable approach to improve soil quality in combined treatments of nanocompounds and bioinoculants which can be used as a good alternative to chemical fertilizers for sustainable agriculture.

2008 ◽  
Vol 53 (No. 4) ◽  
pp. 186-192 ◽  
Author(s):  
V. Balakrishnan ◽  
K. Venkatesan ◽  
K.C. Ravindran

Biocompost has been identified as an alternative to chemical fertilizers that increased soil microbial population and soil enzyme activities in sustainable farming. The objective of this field study was to evaluate the effect of three halophytic composts in combination with farmyard manure and phosphate solubilising bacteria (<i>Bacillus megaterium</i>) on soil microflora and enzyme activities. The results show that among nine treatments given, the application of <i>Suaeda</i> compost in combination with farmyard manure and phosphate solubilising bacteria (T<sub>9</sub>) significantly increased the soil microflora such as bacteria, fungi and actinomycetes and soil enzyme activities such as dehydrogenases, alkaline phosphatase, cellulase and urease in soil cultivated with <i>Arachis hypogaea</i>.


2017 ◽  
Vol 22 (3) ◽  
pp. 175-181
Author(s):  
Rika Andriati Sukma Dewi ◽  
Lilik Tri Indriyati ◽  
Bandung Sahari ◽  
Supiandi Sabiham

Loss of soil organic matter can be caused by erosion triggered by soil compaction and high rainfall. The aims of  the study were to determine (1) the loss of soil organic matter, lignocellulose, and soil microbial population due to erosion and (2) the contribution of organic matter from oil palm fronds. In the current study, the erosion plots were built on the accessible inter-row (gawangan hidup) and inaccessible inter-row (gawangan mati) of oil palm plantations located at the slope of 6-10% and >10%. Soil organic matter, lignin, cellulose, and hemicellulose contents and total soil microbial populations were measured in the sediments collected from the erosion plots. The results showed that the loss of organic matter was higher in the accessible inter-row than that in the inaccessible inter-row. The addition of lignin, cellulose, and hemicellulose from oil palm fronds into the soil are 2.06 Mg ha-1 yr-1, 1.13 Mg ha-1 yr-1 and 1.02 Mg ha-1 yr-1, respectively. Total bacterial population in the sediments taken from the accessible inter-row was higher than that from the inaccessible inter-row, while the total fungal population in the sediments from the inaccessible inter-row was higher than that from the accessible inter-row.  


ael ◽  
2018 ◽  
Vol 3 (1) ◽  
pp. 180006 ◽  
Author(s):  
Tunsisa T. Hurisso ◽  
Dan J. Moebius‐Clune ◽  
Steve W. Culman ◽  
Bianca N. Moebius‐Clune ◽  
Janice E. Thies ◽  
...  

2020 ◽  
Vol 42 (10) ◽  
pp. 482-492
Author(s):  
Keong-Hyeon An ◽  
Songhee Kim ◽  
Seung-Woo Jeong

Objectives : Changes in soil properties after washing of metal-contaminated soil near the former Janghang Smelter were investigated in this study. Contaminated input soils and remediated output soils were sampled from three different soil washing plants and analyzed for soil physical and chemical properties. Soil quality was evaluated by the soil fertilization guideline suggested by the Korea Rural Development Administration (KRDA). This study revealed the necessity of soil quality management for the remediated soil as an ecosystem member.Methods : Three soil washing plants (1OU, 2OU, 3OU) were commonly divided into the five steps: 1) the particle separation (crushing and grinding etc.) → 2) soil particle classification (big stone, fine soil, minimal fine soil) → 3) chemical washing (fine soil) → 4) neutralization of washed soil (lime) → 5) return-back to the original position. The separating minimum particle diameters of the 1OU, 2OU, and 3OU washing processes were 5 µm, 20 µm, and 10 µm, respectively, and the chemical washing solutions used were respectively 0.1 M H2SO4, 0.5 M H2SO4/0.5 M H3PO4, and 0.1 N NaOH-Na2CO3 (alkali reduction). Soils were collected before and after washing, air-dried, sieved with < 2 mm and analyzed for soil texture, bulk density, aggregate stability (AS), water holding capacity (WHC), pH, electrical conductivity (EC), organic matter content (OM), total nitrogen (TN), available phosphate (AvP), cation exchange capacity (CEC), exchangeable cations (potassium, calcium, magnesium, sodium).Results and Discussion : Sandy soil showed a big change in soil texture before and after soil washing, while there was no change in soil texture for fine soil. Sandy soil showed an increase in bulk density, a decrease in WHC, and a decrease in AS. The pH of remediated soil was affected by the type of washing chemical. The acidic washing processes (1OU, 2OU) resulted in low pH soils, while an alkali reduction process (3OU) showed high pH soil. The soil OM, TN, AvP and CEC decreased after soil washing. In the case of silty paddy soil, OM and TN were significantly reduced by washing. The most important change in soil property after washing was EC. After soil washing, the soil electrical conductivity increased sharply in all OUs : 1OU 0.51 → 6.21 ds/m, 2OU 1.09 → 3.73 ds/m, 3OU 0.99 → 9.30 ds/m. The EC values of the contaminated soil before washing were all less than 2 ds/m, which is an appropriate agricultural level. However, EC was significantly increased after washing, implying a strong salty soil level. The soil quality evaluation results before and after washing showed that the soil quality of heavy-metal contaminated soil was apparently degraded by washing. The number of soil property in the optimal range before washing (contaminated soil) was 10, but the number decreased to 5 after washing (remediated soil).Conclusions : Soil quality may be significantly changed after soil washing. The most noticeable change was the significant increase in the EC of soil and the soil health should be restored first to recycle the remediated soil. The important causes of changes in the soil quality were the separation of fine soil particles containing relatively high heavy metals from the bulk soil, soil disturbance by chemical washing solution and addition of high salts such as coagulants and pH adjust. Soil management schemes considering soil health should be soon prepared to restore the remediated soil back as an ecosystem member.


Sign in / Sign up

Export Citation Format

Share Document