scholarly journals Root-To-Shoot Ratios of Flood-Tolerant Perennial Grasses Depend on Harvest and Fertilization Management: Implications for Quantification of Soil Carbon Input

2021 ◽  
Vol 9 ◽  
Author(s):  
Claudia Kalla Nielsen ◽  
Uffe Jørgensen ◽  
Poul Erik Lærke

Quantifying soil organic carbon stocks (SOC) is a critical task in decision support related to climate and land management. Carbon inputs in soils are affected by development of belowground (BGB) and aboveground (AGB) biomass. However, uncertain fixed values of root:shoot ratios (R/S) are widely used for calculating SOC inputs in agroecosystems. In this study, we 1) assessed the effect of harvest frequency (zero, one, two, and five times annually) on the root and shoot development of the perennial grasses Phalaris arundinacea (RCG), Festuca arundinacea (TF), and Festulolium (FL); 2) determined the effect of management on the carbon and nitrogen content in AGB and BGB; and 3) assessed the implications of R/S for SOC quantification. We found the highest yields of BGB in zero-cut treatments with 59% (FL)–70% (RCG) of total biomass. AGB yield was highest in the five-cut treatments with 54% (RCG)–60% (FL), resulting in a decreasing R/S with frequent management, ranging from 1.6–2.3 (zero cut) to 0.6–0.8 (five cuts). No differences in R/S between species were observed. Total carbon yield ranged between 5.5 (FL, one cut) and 18.9 t ha−1 year−1 (FL, zero cut), with a higher carbon content in AGB (45%) than BGB (40%). We showed that the input of total organic carbon into soil was highest in the zero-cut treatments, ranging between 6.6 and 7.6 t C ha−1 year−1, although, in the context of agricultural management the two-cut treatments showed the highest potential for carbon input (3.4–5.4 t C ha−1 year−1). Our results highlighted that using default values for R/S resulted in inaccurate modeling estimations of the soil carbon input, as compared to a management-specific application of R/S. We conclude that an increasing number of annual cuts significantly lowered the R/S for all grasses. Given the critical role of BGB carbon input, our study highlights the need for comprehensive long-term experiments regarding the development of perennial grass root systems under AGB manipulation by harvest. In conclusion, we indicated the importance of using more accurate R/S for perennial grasses depending on management to avoid over- and underestimation of the carbon sink functioning of grassland ecosystems.

Author(s):  
LZ Baistruk-Hlodan ◽  
MM Кhomiak ◽  
HZ Zhapaleu

Aim. The purpose was to identify collection accessions – sources of valuable traits to use as starting material for creating varieties of perennial grasses in Western Ukraine. Results and Discussion. Perennial grasses play an essential role in improving the efficiency of forage production. They produce a fodder mass that contains major macro- and micronutrients, minerals, vitamins, amino acids, and other nutrients in available forms, with a high energy protein saturation. Practice shows that due to the introduction of varietal crops into production in combination with optimal technologies of their cultivation, which allows revealing the potential of each variety, it is possible to additionally obtain 20-30% higher yields of fodder mass annually and harvest 2 to 3-fold seed yields. In 2016-2020, a search was carried out and 570 new accessions of perennial grasses were recruited, of which 201 were legumes and 369 were graminaceous grasses. The collection contains 1,319 accessions, of which 232 are Trifolium pratense L., 115 are Trifolium repens L., 49 are Trifolium hybridum L., 107 are Lotus corniculatus L., 80 belong to other legume species (Medicago, Galega orientalis L. Galega orientalis L. and Trifolium species), 131 are Phleum pratense L., 187 are Dactylis glomerata L., 146 are Lolium perenne L., 53 are Arrhenatherum elatius (L.) J. et C.Presl., 67 are Festuca rubra L., 28 are Festuca trachyphylla L., 32 are Bromopsis inermis (Leyss.) Holub, 92 belong to other species of other types of graminaceous grasses (Festuca pratensis Huds., Festuca arundinacea Schreb., Agrostis alba L. etc.). Accessions that enter the Department are registered and sown for propagation in the field. After examination, valuable accessions are transferred to the National Depository and registered in the National Catalogue; the rest of the obtained seeds are used in working collections. Conclusions. The best collection accessions were identified by a set of economically valuable traits: sources of daily growth of shoots (30), winter hardiness (28), plant height (22), yield of green mass upon haymaking (28) and pasture (19) use, forage productivity (15), seed productivity (25), foliage (21), and disease resistance (23). They can be recommended as starting material to create varieties of perennial grasses with high yields of forage mass and seeds for various applications.


2018 ◽  
Author(s):  
Marwa Tifafi ◽  
Marta Camino-Serrano ◽  
Christine Hatté ◽  
Hector Morras ◽  
Lucas Moretti ◽  
...  

Abstract. Despite the importance of soil as a large component of the terrestrial ecosystems, the soil compartments are not well represented in the Land Surface Models (LSMs). Indeed, soils in current LSMs are generally represented based on a very simplified schema that can induce a misrepresentation of the deep dynamics of soil carbon. Here, we present a new version of the IPSL-Land Surface Model called ORCHIDEE-SOM, incorporating the 14C dynamic in the soil. ORCHIDEE-SOM, first, simulates soil carbon dynamics for different layers, down to 2 m depth. Second, concentration of dissolved organic carbon (DOC) and its transport are modeled. Finally, soil organic carbon (SOC) decomposition is considered taking into account the priming effect. After implementing the 14C in the soil module of the model, we evaluated model outputs against observations of soil organic carbon and 14C activity (F14C) for different sites with different characteristics. The model managed to reproduce the soil organic carbon stocks and the F14C along the vertical profiles. However, an overestimation of the total carbon stock was noted, but was mostly marked on the surface. Then, thanks to the introduction of 14C, it has been possible to highlight an underestimation of the age of carbon in the soil. Thereafter, two different tests on this new version have been established. The first was to increase carbon residence time of the passive pool and decrease the flux from the slow pool to the passive pool. The second was to establish an equation of diffusion, initially constant throughout the profile, making it vary exponentially as a function of depth. The first modifications did not improve the capacity of the model to reproduce observations whereas the second test showed a decrease of the soil carbon stock overestimation, especially at the surface and an improvement of the estimates of the carbon age. This assumes that we should focus more on vertical variation of soil parameters as a function of depth, mainly for diffusion, in order to upgrade the representation of global carbon cycle in LSMs, thereby helping to improve predictions of the future response of soil organic carbon to global warming.


Author(s):  
K.K. Vikrant ◽  
D.S. Chauhan ◽  
R.H. Rizvi

Climate change is one of the impending problems that have affected the productivity of agroecosystems which calls for urgent action. Carbon sequestration through agroforestry along altitude in mountainous regions is one of the options to contribute to global climate change mitigation. Three altitudes viz. lower (286-1200m), middle (1200-2000m), and upper (2000-2800m) have been selected in Tehri district. Ten Quadrates (10m × 10 m) were randomly selected from each altitude in agrisilviculture system. At every sampling point, one composite soil sample was taken at 30 cm soil depth for soil organic carbon analysis. For the purpose of woody biomass, Non destructive method and for crop biomass assessment destructive method was employed. Finally, aboveground biomass (AGB), belowground biomass carbon (BGB), Total tree Biomass (TTB), Crop biomass (CB), Total Biomass (TB), Total biomass carbon (TBC), soil organic carbon (SOC), and total carbon stock (TC) status were estimated and variables were compared using one-way analysis of variance (ANOVA).The result indicated that AGB, BGB, TTB, CB , TB, TBC, SOC, and TC varied significantly (p < 0.05) across the altitudes. Results showed that total carbon stock followed the order upper altitude ˃ middle altitudes ˃ lower altitude. The upper altitude (2000-2800 m) AGB, BGB,TTB, TBC,SOC, and TC stock was estimated as 2.11 Mg ha-1 , 0.52 Mg ha-1, 2.63 Mg ha-1, 2.633 Mg ha-1, 1.18 Mg ha-1 , 26.53 Mg ha-1, 38.48 Mg ha-1 respectively, and significantly higher than the other altitudes. It was concluded that agrisilviculture system hold a high potential for carbon storage at temperate zones. Quercus lucotrichophora, Grewia oppositifolia and Melia azadirach contributed maximum carbon storage which may greatly contribute to the climate resilient green economy strategy and their conservation should be promoted.


2021 ◽  
Vol 1 ◽  
Author(s):  
Qian Liu ◽  
Peipei Wang ◽  
Zhijing Xue ◽  
Zhengchao Zhou ◽  
Jun'e Liu ◽  
...  

Emerging consensus is that land-use change resulting through the “Grain for Green” project has had a significant impacted on soil organic carbon (SOC), thereby probably enhancing the carbon sequestration capacity of terrestrial ecosystems. However, it remains largely unknown whether a watershed acts as a source or sink of soil carbon during the later period of ecological restoration. This study comprehensively investigated the changes of SOC stock in 2005, 2010, and 2017 along different land-use types. It was aimed to evaluate the dynamics to SOC storage capacity over different vegetation restoration maturity in the Shanghuang Watershed, China. The results showed that restoration increased the accumulation of organic carbon pools in the early stage. Significant increases in SOC stock were observed in shrubland and grassland in comparison to that in other land uses, and these two land-use types represented the optimal combination for ecological restoration in the basin. The SOC stock did not increase indefinitely during the long-term vegetation restoration process, but rather first increased rapidly with vegetation planting and reached a peak, following which it declined slightly. Therefore, pure vegetation restoration cannot maintain a permanent soil carbon sink, some measures to maintain the stability of carbon and to prolong soil C persistence are essential to take.


2003 ◽  
Vol 54 (1) ◽  
pp. 27 ◽  
Author(s):  
P. R. Stork ◽  
P. H. Jerie

Two field trials were established to evaluate the ability of perennial grasses to recoup leaching losses of nitrogen in orchards. A perennial grass was considered suitable for use in orchards if it had a winter active–summer dormant growth cycle. High winter growth would ensure de-watering of the soil profile and nitrate uptake during this period, when an orchard is most vulnerable to leaching losses of nitrate. Low growth in summer would minimise competition for water and nutrients with fruit trees. These traits were studied in 14 varieties of grasses from 8 species in an open field and in an established apricot orchard. Semi-dormant summer growth was observed in species such as Dactylis glomerata L. cv. Kasbah, and Festuca arundinacea L. cv. MK88931. In the open field trial, the sequestration of NO3–-N + NH4+-N between late autumn and early spring, by Kasbah and MK88931, was estimated at 172 and 220 kg N/ha, respectively. Kasbah and MK88931 also demonstrated the driest soil profiles to a depth of 1.5 m in this period. This reflected their high water use and de-watering potential. Therefore, the performance of these grasses demonstrated a model approach to mitigate nitrate leaching below orchard root-zones. They could minimise deep percolation of rainfall and sequestered large amounts of inorganic nitrogen in soil during winter, whilst producing low growth during summer.


2003 ◽  
Vol 54 (9) ◽  
pp. 903 ◽  
Author(s):  
S. P. Boschma ◽  
M. J. Hill ◽  
J. M. Scott ◽  
G. G. Rapp

A field experiment was conducted to study the effects of defoliation and moisture stresses on perennial pasture grasses and to identify traits associated with their resilience. The experiment, conducted near Armidale on the Northern Tablelands of NSW, studied 4 introduced perennial grass species (Phalaris aquatica, Festuca arundinacea, Dactylis glomerata, and Lolium perenne) and 2 native grass species (Microlaena stipoides and Austrodanthonia richardsonii) subjected to 3 moisture regimes (non-stress moisture, moderate drought, and severe drought) and 2 defoliation intensities (severe and moderate). Basal area, herbage mass, phenological growth stage, nitrogen concentration, root mass, and rooting depth were compared over 2 independent 6-month periods: spring–summer (1 September 1994–28 February 1995) and summer–autumn (1 December 1994–31 May 1995). Multiple regression was used to determine which traits were important for determining plant resilience.The differences between species and their respective responses were evident in the traits measured. In general, basal area tended to increase over summer and show little change during autumn. Severe defoliation stimulated plant growth, resulting in higher harvested herbage mass than from those moderately defoliated. Reproductive development was suppressed by severe drought and reduced by moderate drought. Severe defoliation suppressed flowering of Dactylis and Lolium at both drought intensities, compared with moderate defoliation. Phalaris, Festuca, and Austrodanthonia were the deepest rooting species during spring–summer, and Dactylis the shallowest. All species had similar rooting depths during summer–autumn, with those under severe and moderate drought having the deepest and shallowest rooting, respectively.Carbohydrate reserves and basal area were important traits for determining plant resilience during spring–summer. During summer–autumn, maintaining basal area and plant biomass through moderate grazing was important for resilience.


Soil Research ◽  
2003 ◽  
Vol 41 (5) ◽  
pp. 889 ◽  
Author(s):  
T. A. Knowles ◽  
B. Singh

Soil carbon is an important component of the global carbon cycle with an estimated pool of soil organic carbon of about 1500 Gt. There are few estimates of the pool of inorganic carbon, but it is thought to be approximately 50% of the organic carbon pool. There is no detailed study on the estimation of the soil carbon pool for Australian soils.In order to quantify the carbon pools and to determine the extent of spatial variability in the organic and inorganic carbon pools, 120 soil cores were taken down to a depth of 0.90 m from a typical cotton field in northern NSW. Three cores were also taken from nearby virgin bushland and these samples were used as paired samples. Each soil core was separated into 4 samples, i.e. 0–0.15, 0.15–0.30, 0.30–0.60, and 0.60–0.90 m. Soil organic carbon was determined by wet oxidation and inorganic carbon content was determined using the difference between total carbon and organic carbon, and confirmed by the acid dissolution method. Total carbon was measured using a LECO CHN analyser. Soil organic carbon of the field constituted 62% (0–0.15 m), 58% (0.15–0.30 m), 60% (0.30–0.60 m), and 67% (0.60–0.90 m) of the total soil carbon. The proportion of inorganic carbon in total carbon is higher than the global average of 32%. Organic carbon content was relatively higher in the deeper layers (>0.30�m) of the studied soils (Vertosols) compared with other soil types of Australia. The carbon content varied across the field, however, there was little correlation between the soil types (grey, red, or intergrade colour) and carbon content. The total soil carbon pool of the studied field was estimated to be about 78 t/ha for 0–0.90 m layer, which was approximately 58% of the total soil carbon in the soil under nearby remnant bushland (136 t/ha). The total pool of carbon in the cotton soils of NSW was estimated to be 44.8 Mt C, where organic carbon and inorganic carbon constitute 34.9 Mt C and 9.9 Mt C, respectively. Based on the results of a limited number of paired sites under remnant vegetation, it was estimated that about 18.9 Mt of C has been lost from Vertosols by cotton cropping in NSW. With more sustainable management practices such as conservation tillage and green manuring, some of the lost carbon can be resequestered, which will help to mitigate the greenhouse effect, improve soil quality and may increase crop yield.


2002 ◽  
Vol 42 (4) ◽  
pp. 431 ◽  
Author(s):  
G. M. Lodge

A split-plot experiment was sown at Tamworth in 1992 to examine the effects of continuous sheep grazing and seasonal closures (autumn, spring, spring + autumn, and summer + winter) on the herbage mass, plant frequency and basal cover of 5 perennial grasses, when sown as monocultures or with a perennial (Trifolium repens cv. Haifa) or annual legume (Trifolium subterraneum var. subterraneum cv. Seaton Park). Plant basal area and crown density data were also collected. The perennial grasses were Phalaris aquatica cv. Sirosa, Festuca arundinacea, cv.� Demeter, Lolium perenne cv. Kangaroo Valley, Austrodanthonia richardsonii (syn. Danthonia richardsonii) cv.�Taranna, and A. bipartita (syn. D. linkii) cv. Bunderra. There was no significant effect of legume presence on the herbage mass or persistence of the perennial grasses. The only treatment that had a significant effect (P< 0.05) on either herbage mass, plant frequency or basal cover data was the grazing treatment × perennial grass interaction in each of the years 1993-98, except for herbage mass in December 1993 and basal cover in October 1998. In all of the grazing treatments examined, Kangaroo Valley ryegrass failed to persist after spring 1994; Demeter fescue had failed by spring 1997 and Sirosa phalaris by spring 1998. Six years after sowing the only temperate grass cultivars that were persisting in all grazing treatments were the native perennials, Taranna and Bunderra. Hence, the data represent the entire stand life from sowing to eventual failure for the 3 introduced cultivars. While grazing treatment effects within years for individual species were significant, overall grazing had little effect on the rate of decline in herbage mass and persistence of Kangaroo Valley, Demeter and Sirosa. By 1998, grazing treatment had no significant effect on the herbage mass and basal cover of Taranna and Bunderra, but their plant frequencies were lowest in the spring rest and summer + winter rest treatments.


2020 ◽  
Vol 21 (12) ◽  
Author(s):  
Normah Awang Besar ◽  
NURUL SYAKILAH SUHAILI ◽  
JIM LIEW JUN FEI ◽  
FAUZAN WAJDI SHA’ARI ◽  
MUHAMMAD IZZUDDIN IDRIS ◽  
...  

Abstract. Besar NA, Suhaili NS, Fei JLJ, Sha’ari FW, Idris MI, Hatta SH, Kodoh J. 2020. Carbon stock estimation of Sulaman Lake Forest Reserve in Sabah, Malaysia. Biodiversitas 21: 5657-5664. Mangrove forest has a significant role in sequestering carbon gases from the atmosphere but there are lesser literature has been made on it. This research was conducted to quantify the aboveground, belowground and soil carbon stock in Sulaman Lake Forest Reserve, Sabah, Malaysia. Nine transect lines with 125 m length were established and a circle with 7 m radius was set in every 25 m. Forest inventory was done to get the diameter breast height of standing trees and soil sampling with four different depths (0-15 cm, 15-30 cm, 30-50 cm and 50-100 cm) were taken for soil analysis and bulk density. Allometric equation was used to calculate aboveground and belowground biomass then its carbon stock was estimated as 50% from its total biomass. The result shows the total carbon stock in the study area was 441.72 Mg C ha-1, and soil has the highest value of carbon stock (351.98 ± 11.73 Mg C ha-1) followed by aboveground carbon (67.30 ± 20.55 Mg C ha-1) and belowground carbon (22.44 ± 0.17 Mg C ha-1). This study found that soil carbon stock made up almost 80% of the total carbon stock in the mangrove forest. This ecosystem also shows a higher value of carbon stock compared to other locations hence emphasized the importance of prioritizing a mangrove forest in any climate mitigation efforts.


1970 ◽  
Vol 18 (2) ◽  
pp. 3-9 ◽  
Author(s):  
S Ranabhat ◽  
KD Awasthi ◽  
R Malla

This study was carried out to analyze the carbon content in different parts of Alnus nepalensis, and to assess the effect of aspect and altitude in the carbon storage in Alnus nepalensis as well as to quantify the total carbon sequestration (stock) in Alnus nepalensis forest in the mid-hills of Kaski District. The inventory for estimating above and below ground biomass of forest was carried out using stratified random sampling technique. The carbon content in different parts of Alnus nepalensis was quantified using combustion method in the laboratory. For determining the soil carbon content, six soil profiles from each aspect were excavated and soil samples were taken from soil profile up to 1 m depth for deep soil and up to bedrock for shallow soils at the interval of 20 cm. Mean carbon content in stem, branches, leaves and bark of Alnus nepalensis were found to be 40.52%, 33%, 9.56% and 16.4%, respectively. Total biomass carbon sequestered in northern aspect was 30.20 t/ha while for southern aspect it was 39.00 t/ha. In both the aspects higher carbon sequestration was observed at an elevation range of 1200-1300m i.e. 34.8 t/ha and 45.6 t/ha in northern and southern aspects, respectively. Soil carbon sequestration in northern and southern aspects was found to be 113.4 t/ha and 169.30 t/ ha, respectively. The total carbon sequestration potential of Alnus nepalensis forest was estimated to be 186.05 t/ha. Key words: Alnus nepalensis, altitude, aspect, carbon sequestration, mid hills   doi: 10.3126/banko.v18i2.2167 Banko Janakari, Vol. 18, No. 2, 3-9


Sign in / Sign up

Export Citation Format

Share Document