scholarly journals Groping in the Fog: Soaring Migrants Exhibit Wider Scatter in Flight Directions and Respond Differently to Wind Under Low Visibility Conditions

2021 ◽  
Vol 9 ◽  
Author(s):  
Paolo Becciu ◽  
Michele Panuccio ◽  
Giacomo Dell’Omo ◽  
Nir Sapir

Atmospheric conditions are known to affect flight propensity, behaviour during flight, and migration route in birds. Yet, the effects of fog have only rarely been studied although they could disrupt orientation and hamper flight. Fog could limit the visibility of migrating birds such that they might not be able to detect landmarks that guide them during their journey. Soaring migrants modulate their flight speed and direction in relation to the wind vector to optimise the cost of transport. Consequently, landmark-based orientation, as well as adjustments of flight speed and direction in relation to wind conditions, could be jeopardised when flying in fog. Using a radar system operated in a migration bottleneck (Strait of Messina, Italy), we studied the behaviour of soaring birds under variable wind and fog conditions over two consecutive springs (2016 and 2017), discovering that migrating birds exhibited a wider scatter of flight directions and responded differently to wind under fog conditions. Birds flying through fog deviated more from the mean migration direction and increased their speed with increasing crosswinds. In addition, airspeed and groundspeed increased in the direction of the crosswind, causing the individuals to drift laterally. Our findings represent the first quantitative empirical evidence of flight behaviour changes when birds migrate through fog and explain why low visibility conditions could risk their migration journey.

2021 ◽  
Author(s):  
Paolo Becciu ◽  
Michele Panuccio ◽  
Giacomo Dell'Omo ◽  
Nir Sapir

Atmospheric conditions are known to affect flight propensity, behaviour during flight, and migration route in birds. Yet, the effects of fog have only been rarely studied, although they could disrupt orientation and hamper the accomplishment of the journey. Soaring migrants modulate their flight speed and direction in relation to the wind vector to optimize the cost of transport. Fog could limit the visibility of migrating birds such that they might not be able to detect landmarks that guide them during their journey. Consequently, landmark-based orientation, as well as adjustments of flight speed and direction in relation to wind conditions, could be jeopardized when flying in fog. Using a radar system that operated in a migration bottleneck (Strait of Messina, Italy), we studied the behaviour of soaring birds under variable wind and fog conditions over two consecutive springs (2016 and 2017), discovering that migrating birds exhibited a wider scatter of flight directions and responded differently to wind conditions under fog conditions. Birds flying through fog deviated more from the mean migration direction and increased their speed with increasing crosswinds. In addition, airspeed and groundspeed increased in the direction of the crosswind, causing a lateral drift of the individuals. Furthermore, the response to tailwind was opposite to that predicted by optimal migration theory. Our findings represent the first quantitative empirical evidence of flight behaviour changes when birds migrate through fog and explain why low visibility conditions could risk their migration journey.


2020 ◽  
Author(s):  
Agnieszka Ożarowska ◽  
Grzegorz Zaniewicz ◽  
Włodzimierz Meissner

Abstract The blackcap Sylvia atricapilla shows a complex migratory pattern and is a suitable species for the studies of morphological migratory syndrome, including adaptations of wing shape to different migratory performance. Obligate migrants of this species that breed in northern, central, and Eastern Europe differ by migration distance and some cover shorter distance to the wintering grounds in the southern part of Europe/North Africa or the British Isles, although others migrate to sub-Saharan Africa. Based on ˃40 years of ringing data on blackcaps captured during autumn migration in the Southern Baltic region, we studied age- and sex-related correlations in wing pointedness and wing length of obligate blackcap migrants to understand the differences in migratory behavior of this species. Even though the recoveries of blackcaps were scarce, we reported some evidence that individuals which differ in migration distance differed also in wing length. We found that wing pointedness significantly increased with an increasing wing length of migrating birds, and adults had longer and more pointed wings than juvenile birds. This indicates stronger antipredator adaptation in juvenile blackcaps than selection on flight efficiency, which is particularly important during migration. Moreover, we documented more pronounced differences in wing length between adult and juvenile males and females. Such differences in wing length may enhance a faster speed of adult male blackcaps along the spring migration route and may be adaptive when taking into account climatic effects, which favor earlier arrival from migration to the breeding grounds.


1991 ◽  
Vol 161 (1) ◽  
pp. 285-298 ◽  
Author(s):  
PATSY M. HUGHES ◽  
JEREMY M. V. RAYNER

A series of experiments is described in which two brown long-eared bats Plecotus auritus Linnaeus (Chiroptera: Vespertilionidae) were flown in a 1mx1mx4.5m flight enclosure at a range of body masses (n=9 experiments for a female bat, and n = 11 for a male bat). The highest three of these masses incorporated artificial loads. Stroboscopic stereophotogrammetry was used to make three-dimensional reconstructions (n=124) of the bats' flight paths. Over the entire range of experiments, wing loading was increased by 44% for the female and 46% for the male bat. Effects arising from captivity were controlled for: experiments at certain wing loadings were repeated after a period in captivity and the response to load was found to be unaltered. Flight speed fell with total mass M or with wing loading, varying as M−0.49 in the female and M−0.42 in the male bat. Wingbeat frequency increased with total mass or wing loading, varying as M0.61 in the female and M0.44in the male bat. Hence frequency, but not speed, changed with mass in the direction predicted by aerodynamic theory. These results were used in a mathematical model to predict wingbeat amplitude, flight power and cost of transport. The model was also used to estimate the optimal flight speeds Vmr and Vmp. The model predicted that amplitude increases with load. Measurements of wingbeat amplitude did not differ significantly from the predicted values. The observed flight speed was below the predicted minimum power speed Vmp (which increases with load), and diverged further from this with progressive loading. The increase in cost of flight calculated by the model over the range of wing loadings was approximately double that which it would have been had the bats adopted the optimal approach predicted by the model. The limitations inherent in the theoretical model, and the possible constraints acting on the animals, are discussed.


2020 ◽  
Vol 77 (2) ◽  
pp. 593-603 ◽  
Author(s):  
Ana Almodóvar ◽  
Graciela G Nicola ◽  
Daniel Ayllón ◽  
Clive N Trueman ◽  
Ian Davidson ◽  
...  

Abstract Historical data on the oceanic distribution and migration routes of southernmost Atlantic salmon Salmo salar populations from Europe are almost non-existent, as no rigorous tagging initiatives have been conducted. Here, we used stable isotope data (δ13C and δ15N) of historic scale collections to identify the potential marine feeding areas of the largest salmon population in the Iberian Peninsula. Data were compared with published datasets from Northern Ireland, Wales, south England, and northeast UK coast, which correspond to series between 15- and 33-year long within the time period from 1958 to 2009. Temporal covariation in sea surface temperature, primary productivity, and δ13C values suggests that feeding areas of Iberian salmon are located around Greenland, both in the Labrador and the Irminger seas. Furthermore, δ13C values of Atlantic salmon from Canadian rivers reported in the literature are similar to those found in individuals from Spanish rivers. Our results suggest that Iberian salmon follow a westerly migration route towards Greenland instead of following the easterly branch of the North Atlantic current into the Norwegian Sea. Characterization of feeding patterns and migration routes might help to understand the causes of ongoing population decline and establish targeted conservation programmes for threatened Iberian salmon.


2017 ◽  
Vol 28 (8) ◽  
pp. 1043-1053 ◽  
Author(s):  
G. R. Ramirez-San Juan ◽  
P. W. Oakes ◽  
M. L. Gardel

In vivo, geometric cues from the extracellular matrix (ECM) are critical for the regulation of cell shape, adhesion, and migration. During contact guidance, the fibrillar architecture of the ECM promotes an elongated cell shape and migration along the fibrils. The subcellular mechanisms by which cells sense ECM geometry and translate it into changes in shape and migration direction are not understood. Here we pattern linear fibronectin features to mimic fibrillar ECM and elucidate the mechanisms of contact guidance. By systematically varying patterned line spacing, we show that a 2-μm spacing is sufficient to promote cell shape elongation and migration parallel to the ECM, or contact guidance. As line spacing is increased, contact guidance increases without affecting migration speed. To elucidate the subcellular mechanisms of contact guidance, we analyze quantitatively protrusion dynamics and find that the structured ECM orients cellular protrusions parallel to the ECM. This spatial organization of protrusion relies on myosin II contractility, and feedback between adhesion and Rac-mediated protrusive activity, such that we find Arp2/3 inhibition can promote contact guidance. Together our data support a model for contact guidance in which the ECM enforces spatial constraints on the lamellipodia that result in cell shape elongation and enforce migration direction.


2009 ◽  
Vol 87 (6) ◽  
pp. 480-490 ◽  
Author(s):  
M. R. Donaldson ◽  
S. J. Cooke ◽  
D. A. Patterson ◽  
S. G. Hinch ◽  
D. Robichaud ◽  
...  

The objective of this study was to combine radio telemetry with individual thermal loggers to assess the extent to which adult migrating sockeye salmon ( Oncorhynchus nerka (Walbaum in Artedi, 1792)) behaviourally thermoregulate during their migration through the Fraser River mainstem, British Columbia. The Fraser mainstem represents a region of the migration route that contains some of the highest mean temperatures encountered by sockeye salmon during their life history. We found that throughout the study area, individual sockeye salmon body temperatures occasionally deviated from ambient temperatures (ΔT), yet individuals maintained a ΔT of –1 °C or cooler for only 5% of their migration through the study region. There were moderate mean deviations of ΔT in two segments that are known to contain thermally stratified waters. In one of the study segments with the greatest ΔT, mean body temperatures decreased as river temperatures increased and ΔT became increasingly positive with higher river discharge rates, but these relationships were not observed in any of the other study segments. No relationship existed between ΔT and migration rate. While periodic associations with cool water were evident, mean body temperatures were not significantly different than mean river temperatures throughout the lower Fraser mainstem. This finding raises further conservation concerns for vulnerable Fraser River sockeye stocks that are predicted to encounter increasing peak summer river temperatures in the coming decades.


2015 ◽  
Vol 2 (12) ◽  
pp. 150347 ◽  
Author(s):  
Frank A. La Sorte ◽  
Wesley M. Hochachka ◽  
Andrew Farnsworth ◽  
Daniel Sheldon ◽  
Benjamin M. Van Doren ◽  
...  

Wind plays a significant role in the flight altitudes selected by nocturnally migrating birds. At mid-latitudes in the Northern Hemisphere, atmospheric conditions are dictated by the polar-front jet stream, whose amplitude increases in the autumn. One consequence for migratory birds is that the region’s prevailing westerly winds become progressively stronger at higher migration altitudes. We expect this seasonality in wind speed to result in migrants occupying progressively lower flight altitudes, which we test using density estimates of nocturnal migrants at 100 m altitudinal intervals from 12 weather surveillance radar stations located in the northeastern USA. Contrary to our expectations, median migration altitudes deviated little across the season, and the variance was lower during the middle of the season and higher during the beginning and especially the end of the season. Early-season migrants included small- to intermediate-sized long-distance migrants in the orders Charadriiformes and Passeriformes, and late-season migrants included large-bodied and intermediate-distance migrants in the order Anseriformes. Therefore, seasonality in the composition of migratory species, and related variation in migration strategies and behaviours, resulted in a convex–concave bounded distribution of migration altitudes. Our results provide a basis for assessing the implications for migratory bird populations of changes in mid-latitude atmospheric conditions probably occurring under global climate change.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8374 ◽  
Author(s):  
Zhenkai Zhao ◽  
Gen Li ◽  
Qing Xiao ◽  
Hui-Rong Jiang ◽  
Gabriel Mbuta Tchivelekete ◽  
...  

The use of zebrafish larvae has aroused wide interest in the medical field for its potential role in the development of new therapies. The larvae grow extremely quickly and the embryos are nearly transparent which allows easy examination of its internal structures using fluorescent imaging techniques. Medical treatment of zebrafish larvae can directly influence its swimming behaviours. These behaviour changes are related to functional changes of central nervous system and transformations of the zebrafish body such as muscle mechanical power and force variation, which cannot be measured directly by pure experiment observation. To quantify the influence of drugs on zebrafish larvae swimming behaviours and energetics, we have developed a novel methodology to exploit intravital changes based on observed zebrafish locomotion. Specifically, by using an in-house MATLAB code to process the recorded live zebrafish swimming video, the kinematic locomotion equation of a 3D zebrafish larvae was obtained, and a customised Computational Fluid Dynamics tool was used to solve the fluid flow around the fish model which was geometrically the same as experimentally tested zebrafish. The developed methodology was firstly verified against experiment, and further applied to quantify the fish internal body force, torque and power consumption associated with a group of normal zebrafish larvae vs. those immersed in acetic acid and two neuroactive drugs. As indicated by our results, zebrafish larvae immersed in 0.01% acetic acid display approximately 30% higher hydrodynamic power and 10% higher cost of transport than control group. In addition, 500 μM diphenylhydantoin significantly decreases the locomotion activity for approximately 50% lower hydrodynamic power, whereas 100 mg/L yohimbine has not caused any significant influences on 5 dpf zebrafish larvae locomotion. The approach has potential to evaluate the influence of drugs on the aquatic animal’s behaviour changes and thus support the development of new analgesic and neuroactive drugs.


Sign in / Sign up

Export Citation Format

Share Document