scholarly journals Incorporating Information of microRNAs into Pathway Analysis in a Genome-Wide Association Study of Bipolar Disorder

2012 ◽  
Vol 3 ◽  
Author(s):  
Wei-Liang Shih ◽  
Chung-Feng Kao ◽  
Li-Chung Chuang ◽  
Po-Hsiu Kuo
2013 ◽  
Vol 115 (9) ◽  
pp. 1343-1359 ◽  
Author(s):  
Sujoy Ghosh ◽  
Juan C. Vivar ◽  
Mark A. Sarzynski ◽  
Yun Ju Sung ◽  
James A. Timmons ◽  
...  

We previously reported the findings from a genome-wide association study of the response of maximal oxygen uptake (V̇o2max) to an exercise program. Here we follow up on these results to generate hypotheses on genes, pathways, and systems involved in the ability to respond to exercise training. A systems biology approach can help us better establish a comprehensive physiological description of what underlies V̇o2maxtrainability. The primary material for this exploration was the individual single-nucleotide polymorphism (SNP), SNP-gene mapping, and statistical significance levels. We aimed to generate novel hypotheses through analyses that go beyond statistical association of single-locus markers. This was accomplished through three complementary approaches: 1) building de novo evidence of gene candidacy through informatics-driven literature mining; 2) aggregating evidence from statistical associations to link variant enrichment in biological pathways to V̇o2max trainability; and 3) predicting possible consequences of variants residing in the pathways of interest. We started with candidate gene prioritization followed by pathway analysis focused on overrepresentation analysis and gene set enrichment analysis. Subsequently, leads were followed using in silico analysis of predicted SNP functions. Pathways related to cellular energetics (pantothenate and CoA biosynthesis; PPAR signaling) and immune functions (complement and coagulation cascades) had the highest levels of SNP burden. In particular, long-chain fatty acid transport and fatty acid oxidation genes and sequence variants were found to influence differences in V̇o2max trainability. Together, these methods allow for the hypothesis-driven ranking and prioritization of genes and pathways for future experimental testing and validation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lawrence Shih-Hsin Wu ◽  
Ming-Chyi Huang ◽  
Cathy Shen-Jang Fann ◽  
Hsien-Yuan Lane ◽  
Chian-Jue Kuo ◽  
...  

AbstractThe search for susceptibility genes underlying the heterogeneous bipolar disorder has been inconclusive, often with irreproducible results. There is a hope that narrowing the phenotypes will increase the power of genetic analysis. Early-onset bipolar disorder is thought to be a genetically homogeneous subtype with greater symptom severity. We conducted a genome-wide association study (GWAS) for this subtype in bipolar I (BPI) disorder. Study participants included 1779 patients of Han Chinese descent with BPI disorder recruited by the Taiwan Bipolar Consortium. We conducted phenotype assessment using the Chinese version of the Schedules for Clinical Assessment in Neuropsychiatry and prepared a life chart with graphic depiction of lifetime clinical course for each of the BPI patient recruited. The assessment of onset age was based on this life chart with early onset defined as ≤20 years of age. We performed GWAS in a discovery group of 516 early-onset and 790 non-early-onset BPI patients, followed by a replication study in an independent group of 153 early-onset and 320 non-early-onset BPI patients and a meta-analysis with these two groups. The SNP rs11127876, located in the intron of CADM2, showed association with early-onset BPI in the discovery cohort (P = 7.04 × 10−8) and in the test of replication (P = 0.0354). After meta-analysis, this SNP was demonstrated to be a new genetic locus in CADM2 gene associated with early-onset BPI disorder (P = 5.19 × 10−8).


2020 ◽  
Vol 108 (6) ◽  
pp. 1233-1242
Author(s):  
Ada Man‐Choi Ho ◽  
Brandon J. Coombes ◽  
Thanh Thanh L. Nguyen ◽  
Duan Liu ◽  
Susan L. McElroy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document