scholarly journals A Genetic Map of the Modern Urban Society of Amsterdam

2021 ◽  
Vol 12 ◽  
Author(s):  
Bart Ferwerda ◽  
Abdel Abdellaoui ◽  
Max Nieuwdorp ◽  
Koos Zwinderman

Genetic differences between individuals underlie susceptibility to many diseases. Genome-wide association studies (GWAS) have discovered many susceptibility genes but were often limited to cohorts of predominantly European ancestry. Genetic diversity between individuals due to different ancestries and evolutionary histories shows that this approach has limitations. In order to gain a better understanding of the associated genetic variation, we need a more global genomics approach including a greater diversity. Here, we introduce the Healthy Life in an Urban Setting (HELIUS) cohort. The HELIUS cohort consists of participants living in Amsterdam, with a level of diversity that reflects the Dutch colonial and recent migration past. The current study includes 10,283 participants with genetic data available from seven groups of inhabitants, namely, Dutch, African Surinamese, South-Asian Surinamese, Turkish, Moroccan, Ghanaian, and Javanese Surinamese. First, we describe the genetic variation and admixture within the HELIUS cohort. Second, we show the challenges during imputation when having a genetically diverse cohort. Third, we conduct a body mass index (BMI) and height GWAS where we investigate the effects of a joint analysis of the entire cohort and a meta-analysis approach for the different subgroups. Finally, we construct polygenic scores for BMI and height and compare their predictive power across the different ethnic groups. Overall, we give a comprehensive overview of a genetically diverse cohort from Amsterdam. Our study emphasizes the importance of a less biased and more realistic representation of urban populations for mapping genetic associations with complex traits and disease risk for all.

2021 ◽  
Author(s):  
Roshni A. Patel ◽  
Shaila A. Musharoff ◽  
Jeffrey P. Spence ◽  
Harold Pimentel ◽  
Catherine Tcheandjieu ◽  
...  

Despite the growing number of genome-wide association studies (GWAS) for complex traits, it remains unclear whether effect sizes of causal genetic variants differ between populations. In principle, effect sizes of causal variants could differ between populations due to gene-by-gene or gene-by-environment interactions. However, comparing causal variant effect sizes is challenging: it is difficult to know which variants are causal, and comparisons of variant effect sizes are confounded by differences in linkage disequilibrium (LD) structure between ancestries. Here, we develop a method to assess causal variant effect size differences that overcomes these limitations. Specifically, we leverage the fact that segments of European ancestry shared between European-American and admixed African-American individuals have similar LD structure, allowing for unbiased comparisons of variant effect sizes in European ancestry segments. We apply our method to two types of traits: gene expression and low-density lipoprotein cholesterol (LDL-C). We find that causal variant effect sizes for gene expression are significantly different between European-Americans and African-Americans; for LDL-C, we observe a similar point estimate although this is not significant, likely due to lower statistical power. Cross-population differences in variant effect sizes highlight the role of genetic interactions in trait architecture and will contribute to the poor portability of polygenic scores across populations, reinforcing the importance of conducting GWAS on individuals of diverse ancestries and environments.


Author(s):  
Ying Wang ◽  
Jing Guo ◽  
Guiyan Ni ◽  
Jian Yang ◽  
Peter M. Visscher ◽  
...  

AbstractPolygenic scores (PGS) have been widely used to predict complex traits and risk of diseases using variants identified from genome-wide association studies (GWASs). To date, most GWASs have been conducted in populations of European ancestry, which limits the use of GWAS-derived PGS in non-European populations. Here, we develop a new theory to predict the relative accuracy (RA, relative to the accuracy in populations of the same ancestry as the discovery population) of PGS across ancestries. We used simulations and real data from the UK Biobank to evaluate our results. We found across various simulation scenarios that the RA of PGS based on trait-associated SNPs can be predicted accurately from modelling linkage disequilibrium (LD), minor allele frequencies (MAF), cross-population correlations of SNP effect sizes and heritability. Altogether, we find that LD and MAF differences between ancestries explain alone up to ~70% of the loss of RA using European-based PGS in African ancestry for traits like body mass index and height. Our results suggest that causal variants underlying common genetic variation identified in European ancestry GWASs are mostly shared across continents.


2021 ◽  
Author(s):  
Chia-Yen Chen ◽  
Tzu-Ting Chen ◽  
Yen-Chen Anne Feng ◽  
Ryan J. Longchamps ◽  
Shu-Chin Lin ◽  
...  

AbstractGenome-wide association studies (GWAS) have identified tens of thousands of genetic loci associated with human complex traits and diseases1,2. However, the majority of GWAS were conducted in individuals of European ancestry3. Failure to capture global genetic diversity has limited biological discovery and impeded equitable delivery of genomic knowledge to diverse populations4. Here we report findings from 102,900 individuals across 36 human quantitative traits in the Taiwan Biobank (TWB), a major biobank effort that broadens the population diversity of genetic studies in East Asia (EAS). We identified 979 novel genetic loci, pinpointed novel causal variants through fine-mapping, compared the genetic architecture across TWB, Biobank Japan (BBJ)5–7 and UK Biobank (UKBB)8,9, and demonstrated the utility of cross-phenotype, cross-population polygenic risk scores (PRS) in disease risk prediction. We release all GWAS summary statistics, fine-mapping results, and single nucleotide polymorphism (SNP) weights and TWB-based PRS reference distributions for polygenic prediction (link to appear upon publication) to facilitate within-EAS and cross-population genetic research.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Wei Wei ◽  
Paula S. Ramos ◽  
Kelly J. Hunt ◽  
Bethany J. Wolf ◽  
Gary Hardiman ◽  
...  

Genome-wide association studies (GWAS) have identified tens of thousands of genetic variants associated with hundreds of phenotypes and diseases, which have provided clinical and medical benefits to patients with novel biomarkers and therapeutic targets. Recently, there has been accumulating evidence suggesting that different complex traits share a common risk basis, namely, pleiotropy. Previously, a statistical method, namely, GPA (Genetic analysis incorporating Pleiotropy and Annotation), was developed to improve identification of risk variants and to investigate pleiotropic structure through a joint analysis of multiple GWAS datasets. While GPA provides a statistically rigorous framework to evaluate pleiotropy between phenotypes, it is still not trivial to investigate genetic relationships among a large number of phenotypes using the GPA framework. In order to address this challenge, in this paper, we propose a novel approach, GPA-MDS, to visualize genetic relationships among phenotypes using the GPA algorithm and multidimensional scaling (MDS). This tool will help researchers to investigate common etiology among diseases, which can potentially lead to development of common treatments across diseases. We evaluate the proposed GPA-MDS framework using a simulation study and apply it to jointly analyze GWAS datasets examining 18 unique phenotypes, which helps reveal the shared genetic architecture of these phenotypes.


2016 ◽  
Author(s):  
Jimmy Z Liu ◽  
Yaniv Erlich ◽  
Joseph K Pickrell

AbstractThe case-control association study is a powerful method for identifying genetic variants that influence disease risk. However, the collection of cases can be time-consuming and expensive; if a disease occurs late in life or is rapidly lethal, it may be more practical to identify family members of cases. Here, we show that replacing cases with their first-degree relatives enables genome-wide association studies by proxy (GWAX). In randomly-ascertained cohorts, this approach enables previously infeasible studies of diseases that are absent (or nearly absent) in the cohort. As an illustration, we performed GWAX of 12 common diseases in 116,196 individuals from the UK Biobank. By combining these results with published GWAS summary statistics in a meta-analysis, we replicated established risk loci and identified 17 newly associated risk loci: four in Alzheimer’s disease, eight in coronary artery disease, and five in type 2 diabetes. In addition to informing disease biology, our results demonstrate the utility of association mapping using family history of disease as a phenotype to be mapped. We anticipate that this approach will prove useful in future genetic studies of complex traits in large population cohorts.


Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 87
Author(s):  
Sean M. Burnard ◽  
Rodney A. Lea ◽  
Miles Benton ◽  
David Eccles ◽  
Daniel W. Kennedy ◽  
...  

Conventional genome-wide association studies (GWASs) of complex traits, such as Multiple Sclerosis (MS), are reliant on per-SNP p-values and are therefore heavily burdened by multiple testing correction. Thus, in order to detect more subtle alterations, ever increasing sample sizes are required, while ignoring potentially valuable information that is readily available in existing datasets. To overcome this, we used penalised regression incorporating elastic net with a stability selection method by iterative subsampling to detect the potential interaction of loci with MS risk. Through re-analysis of the ANZgene dataset (1617 cases and 1988 controls) and an IMSGC dataset as a replication cohort (1313 cases and 1458 controls), we identified new association signals for MS predisposition, including SNPs above and below conventional significance thresholds while targeting two natural killer receptor loci and the well-established HLA loci. For example, rs2844482 (98.1% iterations), otherwise ignored by conventional statistics (p = 0.673) in the same dataset, was independently strongly associated with MS in another GWAS that required more than 40 times the number of cases (~45 K). Further comparison of our hits to those present in a large-scale meta-analysis, confirmed that the majority of SNPs identified by the elastic net model reached conventional statistical GWAS thresholds (p < 5 × 10−8) in this much larger dataset. Moreover, we found that gene variants involved in oxidative stress, in addition to innate immunity, were associated with MS. Overall, this study highlights the benefit of using more advanced statistical methods to (re-)analyse subtle genetic variation among loci that have a biological basis for their contribution to disease risk.


Author(s):  
Arslan A. Zaidi ◽  
Iain Mathieson

AbstractLarge genome-wide association studies (GWAS) have identified many loci exhibiting small but statistically significant associations with complex traits and disease risk. However, control of population stratification continues to be a limiting factor, particularly when calculating polygenic scores where subtle biases can cumulatively lead to large errors. We simulated GWAS under realistic models of demographic history to study the effect of residual stratification in large GWAS. We show that when population structure is recent, it cannot be fully corrected using principal components based on common variants—the standard approach—because common variants are uninformative about recent demographic history. Consequently, polygenic scores calculated from such GWAS results are biased in that they recapitulate non-genetic environmental structure. Principal components calculated from rare variants or identity-by-descent segments largely correct for this structure if environmental effects are smooth. However, even these corrections are not effective for local or batch effects. While sibling-based association tests are immune to stratification, the hybrid approach of ascertaining variants in a standard GWAS and then re-estimating effect sizes in siblings reduces but does not eliminate bias. Finally, we show that rare variant burden tests are relatively robust to stratification. Our results demonstrate that the effect of population stratification on GWAS and polygenic scores depends not only on the frequencies of tested variants and the distribution of environmental effects but also on the demographic history of the population.


2018 ◽  
Author(s):  
A.G. Allegrini ◽  
S. Selzam ◽  
K. Rimfeld ◽  
S. von Stumm ◽  
J.B. Pingault ◽  
...  

AbstractRecent advances in genomics are producing powerful DNA predictors of complex traits, especially cognitive abilities. Here, we leveraged summary statistics from the most recent genome-wide association studies of intelligence and educational attainment to build prediction models of general cognitive ability and educational achievement. To this end, we compared the performances of multi-trait genomic and polygenic scoring methods. In a representative UK sample of 7,026 children at age 12 and 16, we show that we can now predict up to 11 percent of the variance in intelligence and 16 percent in educational achievement. We also show that predictive power increases from age 12 to age 16 and that genomic predictions do not differ for girls and boys. Multivariate genomic methods were effective in boosting predictive power and, even though prediction accuracy varied across polygenic scores approaches, results were similar using different multivariate and polygenic score methods. Polygenic scores for educational attainment and intelligence are the most powerful predictors in the behavioural sciences and exceed predictions that can be made from parental phenotypes such as educational attainment and occupational status.


2021 ◽  
Author(s):  
Steven Gazal ◽  
Omer Weissbrod ◽  
Farhad Hormozdiari ◽  
Kushal Dey ◽  
Joseph Nasser ◽  
...  

Although genome-wide association studies (GWAS) have identified thousands of disease-associated common SNPs, these SNPs generally do not implicate the underlying target genes, as most disease SNPs are regulatory. Many SNP-to-gene (S2G) linking strategies have been developed to link regulatory SNPs to the genes that they regulate in cis, but it is unclear how these strategies should be applied in the context of interpreting common disease risk variants. We developed a framework for evaluating and combining different S2G strategies to optimize their informativeness for common disease risk, leveraging polygenic analyses of disease heritability to define and estimate their precision and recall. We applied our framework to GWAS summary statistics for 63 diseases and complex traits (average N=314K), evaluating 50 S2G strategies. Our optimal combined S2G strategy (cS2G) included 7 constituent S2G strategies (Exon, Promoter, 2 fine-mapped cis-eQTL strategies, EpiMap enhancer-gene linking, Activity-By-Contact (ABC), and Cicero), and achieved a precision of 0.75 and a recall of 0.33, more than doubling the precision and/or recall of any individual strategy; this implies that 33% of SNP-heritability can be linked to causal genes with 75% confidence. We applied cS2G to fine-mapping results for 49 UK Biobank diseases/traits to predict 7,111 causal SNP-gene-disease triplets (with S2G-derived functional interpretation) with high confidence. Finally, we applied cS2G to genome-wide fine-mapping results for these traits (not restricted to GWAS loci) to rank genes by the heritability linked to each gene, providing an empirical assessment of disease omnigenicity; averaging across traits, we determined that the top 200 (1%) of ranked genes explained roughly half of the heritability linked to all genes. Our results highlight the benefits of our cS2G strategy in providing functional interpretation of GWAS findings; we anticipate that precision and recall will increase further under our framework as improved functional assays lead to improved S2G strategies. 


Sign in / Sign up

Export Citation Format

Share Document