scholarly journals Theoretical and empirical quantification of the accuracy of polygenic scores in ancestry divergent populations

Author(s):  
Ying Wang ◽  
Jing Guo ◽  
Guiyan Ni ◽  
Jian Yang ◽  
Peter M. Visscher ◽  
...  

AbstractPolygenic scores (PGS) have been widely used to predict complex traits and risk of diseases using variants identified from genome-wide association studies (GWASs). To date, most GWASs have been conducted in populations of European ancestry, which limits the use of GWAS-derived PGS in non-European populations. Here, we develop a new theory to predict the relative accuracy (RA, relative to the accuracy in populations of the same ancestry as the discovery population) of PGS across ancestries. We used simulations and real data from the UK Biobank to evaluate our results. We found across various simulation scenarios that the RA of PGS based on trait-associated SNPs can be predicted accurately from modelling linkage disequilibrium (LD), minor allele frequencies (MAF), cross-population correlations of SNP effect sizes and heritability. Altogether, we find that LD and MAF differences between ancestries explain alone up to ~70% of the loss of RA using European-based PGS in African ancestry for traits like body mass index and height. Our results suggest that causal variants underlying common genetic variation identified in European ancestry GWASs are mostly shared across continents.

2021 ◽  
Author(s):  
Roshni A. Patel ◽  
Shaila A. Musharoff ◽  
Jeffrey P. Spence ◽  
Harold Pimentel ◽  
Catherine Tcheandjieu ◽  
...  

Despite the growing number of genome-wide association studies (GWAS) for complex traits, it remains unclear whether effect sizes of causal genetic variants differ between populations. In principle, effect sizes of causal variants could differ between populations due to gene-by-gene or gene-by-environment interactions. However, comparing causal variant effect sizes is challenging: it is difficult to know which variants are causal, and comparisons of variant effect sizes are confounded by differences in linkage disequilibrium (LD) structure between ancestries. Here, we develop a method to assess causal variant effect size differences that overcomes these limitations. Specifically, we leverage the fact that segments of European ancestry shared between European-American and admixed African-American individuals have similar LD structure, allowing for unbiased comparisons of variant effect sizes in European ancestry segments. We apply our method to two types of traits: gene expression and low-density lipoprotein cholesterol (LDL-C). We find that causal variant effect sizes for gene expression are significantly different between European-Americans and African-Americans; for LDL-C, we observe a similar point estimate although this is not significant, likely due to lower statistical power. Cross-population differences in variant effect sizes highlight the role of genetic interactions in trait architecture and will contribute to the poor portability of polygenic scores across populations, reinforcing the importance of conducting GWAS on individuals of diverse ancestries and environments.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Declan Bennett ◽  
Donal O’Shea ◽  
John Ferguson ◽  
Derek Morris ◽  
Cathal Seoighe

AbstractOngoing increases in the size of human genotype and phenotype collections offer the promise of improved understanding of the genetics of complex diseases. In addition to the biological insights that can be gained from the nature of the variants that contribute to the genetic component of complex trait variability, these data bring forward the prospect of predicting complex traits and the risk of complex genetic diseases from genotype data. Here we show that advances in phenotype prediction can be applied to improve the power of genome-wide association studies. We demonstrate a simple and efficient method to model genetic background effects using polygenic scores derived from SNPs that are not on the same chromosome as the target SNP. Using simulated and real data we found that this can result in a substantial increase in the number of variants passing genome-wide significance thresholds. This increase in power to detect trait-associated variants also translates into an increase in the accuracy with which the resulting polygenic score predicts the phenotype from genotype data. Our results suggest that advances in methods for phenotype prediction can be exploited to improve the control of background genetic effects, leading to more accurate GWAS results and further improvements in phenotype prediction.


2021 ◽  
Author(s):  
Declan Bennett ◽  
Dónal O'Shea ◽  
John Ferguson ◽  
Derek Morris ◽  
Cathal Seoighe

Abstract Ongoing increases in the size of human genotype and phenotype collections offer the promise of improved understanding of the genetics of complex diseases. In addition to the biological insights that can be gained from the nature of the variants that contribute to the genetic component of complex trait variability, these data bring forward the prospect of predicting complex traits and the risk of complex genetic diseases from genotype data. Here we show that advances in phenotype prediction can be applied to improve the power of genome-wide association studies. We demonstrate a simple and efficient method to model genetic background effects using polygenic scores derived from SNPs that are not on the same chromosome as the target SNP. Using simulated and real data we found that this can result in a substantial increase in the number of variants passing genome-wide significance thresholds. This increase in power to detect trait-associated variants also translates into an increase in the accuracy with which the resulting polygenic score predicts the phenotype from genotype data. Our results suggest that advances in methods for phenotype prediction can be exploited to improve the control of background genetic effects, leading to more accurate GWAS results and further improvements in phenotype prediction.


Author(s):  
Declan Bennett ◽  
Derek Morris ◽  
Cathal Seoighe

ABSTRACTOngoing increases in the size of human genotype and phenotype collections offer the promise of improved understanding of the genetics of complex diseases. In addition to the biological insights that can be gained from the nature of the variants that contribute to the genetic component of complex trait variability, these data have brought forward the prospect of predicting complex traits and the risk of complex genetic diseases from genotype data. Optimal realization of these objectives requires ongoing methodological developments, designed to identify true trait-associated variants and accurately predict phenotype from genotype. These methods must be computationally efficient, in order to remain tractable in the context of high variant densities and very large sample sizes. Here we show that the power of linear mixed models that are in widespread use for GWAS can be increased significantly by modeling off-target genetic effects using polygenic scores derived from SNPs that are not on the same chromosome as the target SNP. Using simulated and real data we found that this can result in a substantial increase in the number of variants passing genome-wide significance thresholds. This increase in power to detect trait-associated variants also translates into an increase in the accuracy with which the resulting polygenic score predicts the phenotype from genotype data. Our results suggest that advances in methods for phenotype prediction can be exploited to improve the control of off-target genetic effects, leading to more accurate GWAS results and further improvements in phenotype prediction.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Karoline Kuchenbaecker ◽  
◽  
Nikita Telkar ◽  
Theresa Reiker ◽  
Robin G. Walters ◽  
...  

Abstract Most genome-wide association studies are based on samples of European descent. We assess whether the genetic determinants of blood lipids, a major cardiovascular risk factor, are shared across populations. Genetic correlations for lipids between European-ancestry and Asian cohorts are not significantly different from 1. A genetic risk score based on LDL-cholesterol-associated loci has consistent effects on serum levels in samples from the UK, Uganda and Greece (r = 0.23–0.28, p < 1.9 × 10−14). Overall, there is evidence of reproducibility for ~75% of the major lipid loci from European discovery studies, except triglyceride loci in the Ugandan samples (10% of loci). Individual transferable loci are identified using trans-ethnic colocalization. Ten of fourteen loci not transferable to the Ugandan population have pleiotropic associations with BMI in Europeans; none of the transferable loci do. The non-transferable loci might affect lipids by modifying food intake in environments rich in certain nutrients, which suggests a potential role for gene-environment interactions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jing Guo ◽  
Andrew Bakshi ◽  
Ying Wang ◽  
Longda Jiang ◽  
Loic Yengo ◽  
...  

AbstractGenome-wide association studies (GWAS) in samples of European ancestry have identified thousands of genetic variants associated with complex traits in humans. However, it remains largely unclear whether these associations can be used in non-European populations. Here, we seek to quantify the proportion of genetic variation for a complex trait shared between continental populations. We estimated the between-population correlation of genetic effects at all SNPs ($$r_{g}$$ r g ) or genome-wide significant SNPs ($$r_{{g\left( {GWS} \right)}}$$ r g GWS ) for height and body mass index (BMI) in samples of European (EUR; $$n = 49,839$$ n = 49 , 839 ) and African (AFR; $$n = 17,426$$ n = 17 , 426 ) ancestry. The $$\hat{r}_{g}$$ r ^ g between EUR and AFR was 0.75 ($${\text{s}}.{\text{e}}. = 0.035$$ s . e . = 0.035 ) for height and 0.68 ($${\text{s}}.{\text{e}}. = 0.062$$ s . e . = 0.062 ) for BMI, and the corresponding $$\hat{r}_{{g\left( {GWS} \right)}}$$ r ^ g GWS was 0.82 ($${\text{s}}.{\text{e}}. = 0.030$$ s . e . = 0.030 ) for height and 0.87 ($${\text{s}}.{\text{e}}. = 0.064$$ s . e . = 0.064 ) for BMI, suggesting that a large proportion of GWAS findings discovered in Europeans are likely applicable to non-Europeans for height and BMI. There was no evidence that $$\hat{r}_{g}$$ r ^ g differs in SNP groups with different levels of between-population difference in allele frequency or linkage disequilibrium, which, however, can be due to the lack of power.


2017 ◽  
Vol 60 (3) ◽  
pp. 335-346 ◽  
Author(s):  
Markus Schmid ◽  
Jörn Bennewitz

Abstract. Quantitative or complex traits are controlled by many genes and environmental factors. Most traits in livestock breeding are quantitative traits. Mapping genes and causative mutations generating the genetic variance of these traits is still a very active area of research in livestock genetics. Since genome-wide and dense SNP panels are available for most livestock species, genome-wide association studies (GWASs) have become the method of choice in mapping experiments. Different statistical models are used for GWASs. We will review the frequently used single-marker models and additionally describe Bayesian multi-marker models. The importance of nonadditive genetic and genotype-by-environment effects along with GWAS methods to detect them will be briefly discussed. Different mapping populations are used and will also be reviewed. Whenever possible, our own real-data examples are included to illustrate the reviewed methods and designs. Future research directions including post-GWAS strategies are outlined.


2019 ◽  
Author(s):  
Hakhamanesh Mostafavi ◽  
Arbel Harpak ◽  
Dalton Conley ◽  
Jonathan K Pritchard ◽  
Molly Przeworski

AbstractFields as diverse as human genetics and sociology are increasingly using polygenic scores based on genome-wide association studies (GWAS) for phenotypic prediction. However, recent work has shown that polygenic scores have limited portability across groups of different genetic ancestries, restricting the contexts in which they can be used reliably and potentially creating serious inequities in future clinical applications. Using the UK Biobank data, we demonstrate that even within a single ancestry group, the prediction accuracy of polygenic scores depends on characteristics such as the age or sex composition of the individuals in which the GWAS and the prediction were conducted, and on the GWAS study design. Our findings highlight both the complexities of interpreting polygenic scores and underappreciated obstacles to their broad use.


2021 ◽  
Author(s):  
Wenmin Zhang ◽  
Hamed S Najafabadi ◽  
Yue Li

Identifying causal variants from genome-wide association studies (GWASs) is challenging due to widespread linkage disequilibrium (LD). Functional annotations of the genome may help prioritize variants that are biologically relevant and thus improve fine-mapping of GWAS results. However, classical fine-mapping methods have a high computational cost, particularly when the underlying genetic architecture and LD patterns are complex. Here, we propose a novel approach, SparsePro, to efficiently conduct functionally informed statistical fine-mapping. Our method enjoys two major innovations: First, by creating a sparse low-dimensional projection of the high-dimensional genotype, we enable a linear search of causal variants instead of an exponential search of causal configurations used in existing methods; Second, we adopt a probabilistic framework with a highly efficient variational expectation-maximization algorithm to integrate statistical associations and functional priors. We evaluate SparsePro through extensive simulations using resources from the UK Biobank. Compared to state-of-the-art methods, SparsePro achieved more accurate and well-calibrated posterior inference with greatly reduced computation time. We demonstrate the utility of SparsePro by investigating the genetic architecture of five functional biomarkers of vital organs. We identify potential causal variants contributing to the genetically encoded coordination mechanisms between vital organs and pinpoint target genes with potential pleiotropic effects. In summary, we have developed an efficient genome-wide fine-mapping method with the ability to integrate functional annotations. Our method may have wide utility in understanding the genetics of complex traits as well as in increasing the yield of functional follow-up studies of GWASs.


Sign in / Sign up

Export Citation Format

Share Document