scholarly journals Five SNPs Within the FGF5 Gene Significantly Affect Both Wool Traits and Growth Performance in Fine-Wool Sheep (Ovis aries)

2021 ◽  
Vol 12 ◽  
Author(s):  
Haiyu Zhao ◽  
Ruixue Hu ◽  
Fadi Li ◽  
Xiangpeng Yue

Fibroblast growth factor 5 (FGF5) gene, a member of fibroblast growth factor superfamily, plays significant roles in the regulation of the hair growth cycle during the development of mammalian hair follicles as well as the skeletal muscle development. In this study, DNA sequencing was used to scan the putative SNPs within the full-length of FGF5 gene, and SNPscan high-throughput technique was applied in the individual genotyping of 604 crossbred sheep. 10 SNPs were identified within FGF5 gene while five of them located in intron 1 could be genotyped, namely SNP1 (g. 105914953 G > A), SNP2 (g. 105922232 T > C), SNP3 (g. 105922244 A > G), SNP4 (g. 105922334 A > T) and SNP5 (g. 105922340 G > T). All these SNPs were in accord with the Hardy-Weinberg equilibrium (P > 0.05), and displayed the moderate polymorphism with PIC values ranging from 0.302 to 0.374. Thereafter, the correlation analysis between each SNP locus and economic traits including wool length, greasy wool weight and growth performance of sheep was systematically implemented. In our results, SNP1, SNP3, SNP4 and SNP5 were significantly associated with wool length, greasy wool weight and growth traits of SG sheep (P < 0.05); SNP1, SNP2, SNP3, and SNP4 were significantly correlated with wool length and growth traits of SSG sheep (P < 0.05). Meanwhile, our study revealed a strong linkage disequilibrium (LD) relationship among these SNPs (r2 > 0.33), except for SNP3 and SNP4 sites (r2 = 0.30). Combination genotype analysis showed that combination genotypes were significantly associated with mean fiber diameter of SG (P < 0.05), and body weight trait of SSG (P < 0.01). The above findings suggested that these SNP loci might affect economic traits synergistically and could be regarded as potential molecular markers for improving both wool production and growth performance of fine-wool sheep, which lay a molecular foundation for the breeding of fine dual-purpose sheep thereby accelerating the pace of sheep breeding.

1990 ◽  
Vol 10 (8) ◽  
pp. 3934-3944
Author(s):  
K E Yutzey ◽  
S J Rhodes ◽  
S F Konieczny

Expression of the mammalian muscle regulatory factors MyoD1, myogenin, and MRF4 will convert C3H10T1/2 fibroblasts to stable muscle cell lineages. Recent studies have shown that MyoD1 and myogenin also trans-activate expression of a number of cotransfected contractile protein genes, suggesting that these muscle regulatory factors are involved in controlling terminal differentiation events. The extent and specificity of trans activation by the muscle regulatory factors, however, have not been compared directly. In this study, we found that MyoD1, myogenin, and MRF4 exhibited different trans-activation capacities. In contrast to MyoD1 and myogenin, MRF4 was inefficient in trans-activating most of the genes tested, although conversion of C3H10T1/2 fibroblasts to a myogenic lineage was observed at similar frequencies with all three factors. Addition of basic fibroblast growth factor to cells expressing exogenous muscle regulatory factors inhibited the transcriptional activation of cotransfected genes, demonstrating that MyoD1, myogenin, or MRF4 proteins alone are not sufficient to produce a terminally differentiated phenotype. In all cases, trans activation was dependent on signal transduction pathways that are regulated by fibroblast growth factor. Our observations, coupled with previous studies showing differences in the temporal expression and protein structure of MyoD1, myogenin, and MRF4, suggest that the individual members of the muscle regulatory factor family have distinct biological roles in controlling skeletal muscle development.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Wei-hong Lin ◽  
Li-Jun Xiang ◽  
Hong-Xue Shi ◽  
Jian Zhang ◽  
Li-ping Jiang ◽  
...  

Growth factors are involved in the regulation of hair morphogenesis and cycle hair growth. The present study sought to investigate the hair growth promoting activities of three approved growth factor drugs, fibroblast growth factor 10 (FGF-10), acidic fibroblast growth factor (FGF-1), and basic fibroblast growth factor (FGF-2), and the mechanism of action. We observed that FGFs promoted hair growth by inducing the anagen phase in telogenic C57BL/6 mice. Specifically, the histomorphometric analysis data indicates that topical application of FGFs induced an earlier anagen phase and prolonged the mature anagen phase, in contrast to the control group. Moreover, the immunohistochemical analysis reveals earlier induction ofβ-catenin and Sonic hedgehog (Shh) in hair follicles of the FGFs-treated group. These results suggest that FGFs promote hair growth by inducing the anagen phase in resting hair follicles and might be a potential hair growth-promoting agent.


2011 ◽  
Vol 22 (5) ◽  
pp. 423-428 ◽  
Author(s):  
Sophie I. J. Vandenabeele ◽  
Sylvie Daminet ◽  
Luc Van Ham ◽  
Thomas B. Farver ◽  
Hilde E. V. DeCock

1987 ◽  
Vol 105 (2) ◽  
pp. 949-956 ◽  
Author(s):  
C H Clegg ◽  
T A Linkhart ◽  
B B Olwin ◽  
S D Hauschka

Analysis of MM14 mouse myoblasts demonstrates that terminal differentiation is repressed by pure preparations of both acidic and basic fibroblast growth factor (FGF). Basic FGF is approximately 30-fold more potent than acidic FGF and it exhibits half maximal activity in clonal assays at 0.03 ng/ml (2 pM). FGF repression occurs only during the G1 phase of the cell cycle by a mechanism that appears to be independent of ongoing cell proliferation. When exponentially growing myoblasts are deprived of FGF, cells become postmitotic within 2-3 h, express muscle-specific proteins within 6-7 h, and commence fusion within 12-14 h. Although expression of these three terminal differentiation phenotypes occurs at different times, all are initiated by a single regulatory "commitment" event in G1. The entire population commits to terminal differentiation within 12.5 h of FGF removal as all cells complete the cell cycle and move into G1. Differentiation does not require a new round of DNA synthesis. Comparison of MM14 behavior with other myoblast types suggests a general model for skeletal muscle development in which specific growth factors serve the dual role of stimulating myoblast proliferation and directly repressing terminal differentiation.


Sign in / Sign up

Export Citation Format

Share Document