scholarly journals Fibroblast Growth Factors Stimulate Hair Growth throughβ-Catenin and Shh Expression in C57BL/6 Mice

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Wei-hong Lin ◽  
Li-Jun Xiang ◽  
Hong-Xue Shi ◽  
Jian Zhang ◽  
Li-ping Jiang ◽  
...  

Growth factors are involved in the regulation of hair morphogenesis and cycle hair growth. The present study sought to investigate the hair growth promoting activities of three approved growth factor drugs, fibroblast growth factor 10 (FGF-10), acidic fibroblast growth factor (FGF-1), and basic fibroblast growth factor (FGF-2), and the mechanism of action. We observed that FGFs promoted hair growth by inducing the anagen phase in telogenic C57BL/6 mice. Specifically, the histomorphometric analysis data indicates that topical application of FGFs induced an earlier anagen phase and prolonged the mature anagen phase, in contrast to the control group. Moreover, the immunohistochemical analysis reveals earlier induction ofβ-catenin and Sonic hedgehog (Shh) in hair follicles of the FGFs-treated group. These results suggest that FGFs promote hair growth by inducing the anagen phase in resting hair follicles and might be a potential hair growth-promoting agent.

Genes ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 297 ◽  
Author(s):  
Yuxin Xu ◽  
Hongmei Liu ◽  
Huilin Pan ◽  
Xinyue Wang ◽  
Yuxin Zhang ◽  
...  

Hair growth and morphology are generally regulated by the hair cycle in mammals. Fibroblast Growth Factor 5 (FGF5), which is a hair cycle regulator, has a role in regulating the hair cycle during the transition from the anagen phase to the catagen phase, and a hereditary long hair phenotype has been widely reported when FGF5 is mutated in humans and other species. However, there has been no such report in rabbits. Thus, the first exon of rabbit FGF5 was disrupted by the CRISPR/Cas9 system, and the phenotype of FGF5-/- rabbits was characterized while using hematoxylin and eosin (H&E) staining, immunohistochemistry, quantitative PCR, scanning electron microscopy, and western blotting. The results showed a significant and systemic long hair phenotype in the FGF5-/- rabbits, which indicated that FGF5 is a negative regulator of hair growth. In addition, a decreased diameter of the fiber and a higher area proportion of hair follicle clusters were determined in FGF5-/- rabbits as compared with the WT rabbits. Further investigation verified that prolonging the anagen phase in rabbits, with decreased BMP2/4 pathway signaling and increased VERSICAN pathway signaling, caused the systemic long hair phenotype. Taken together, these results indicate a systemic long hair phenotype by prolonging anagen in FGF5-/- rabbits, which could be widely used for Fur production and an ideal model for studying the mechanism of long hair in the future.


1996 ◽  
Vol 271 (4) ◽  
pp. L495-L505 ◽  
Author(s):  
R. R. Deterding ◽  
C. R. Jacoby ◽  
J. M. Shannon

We have shown that pulmonary epithelial growth and differentiation can occur if pulmonary mesenchyme is replaced with a mixture of growth factors [total growth medium (TGM)] that consists of adult rat bronchoalveolar lavage fluid, insulin, epidermal growth factor (EGF), cholera toxin (CT), acidic fibroblast growth factor (aFGF), and fetal bovine serum. In the present study, we have defined the importance of specific components of TGM. Day 14 fetal rat distal lung epithelium, devoid of mesenchyme, was enrobed in growth factor-depleted Matrigel and cultured for 5 days in various soluble factors. We found that deleting aFGF or CT from TGM significantly reduced DNA synthesis. Epithelial proliferation was not significantly different when keratinocyte growth factor (KGF) replaced aFGF in TGM. KGF, however, required the presence of a basal medium containing CT, insulin, and serum for optimal proliferation. We then added specific growth factors to the basal medium and showed that aFGF and KGF were more potent mitogens than EGF, transforming growth factor-alpha, and hepatocyte growth factor. Additionally, basal medium + KGF also allowed progression to a distal alveolar phenotype. We conclude that aFGF and KGF may be important mediators in epithelial-mesenchymal interactions.


1998 ◽  
Vol 275 (4) ◽  
pp. L701-L708 ◽  
Author(s):  
Philip L. Sannes ◽  
Jody Khosla ◽  
Cheng-Ming Li ◽  
Ines Pagan

The alveolar basement membrane contains a variety of extracellular matrix (ECM) molecules, including laminin and sulfated glycosaminoglycans of proteoglycans. These mixtures exist within microdomains of differing levels of sulfate, which may specifically interact to be key determinants of the known capacity of the type II cell to respond to certain growth factors. Isolated type II cells were exposed to either acidic fibroblast growth factor (FGF-1), basic fibroblast growth factor (FGF-2), or keratinocyte growth factor (KGF; FGF-7) on culture wells precoated with laminin alone or in combination with chondroitin sulfate (CS), high-molecular-weight heparin, or their desulfated forms. Desulfated heparin significantly elevated FGF-1- and FGF-2-stimulated DNA synthesis, whereas desulfated CS and N-desulfated heparin elevated FGF-7-stimulated DNA synthesis by type II cells on laminin substrata. When FGF-1 was mixed into the various test matrix substrata, DNA synthesis was significantly increased in all cases. These results demonstrated that decreased levels of sulfate in ECM substrata act to upregulate responses to heparin-binding growth factors by alveolar epithelial cells on laminin substrata.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jing-jie Li ◽  
Zheng Li ◽  
Li-juan Gu ◽  
Yun-bo Wang ◽  
Mi-ra Lee ◽  
...  

Deer antlers are the only mammalian appendage capable of regeneration. We aimed to investigate the effect of red deer antler extract in regulating hair growth, using a mouse model. The backs of male mice were shaved at eight weeks of age. Crude aqueous extracts of deer antler were prepared at either 4°C or 100°C and injected subcutaneously to two separate groups of mice (n=9) at 1 mL/day for 10 consecutive days, with water as a vehicle control group. The mice skin quantitative hair growth parameters were measured and 5-bromo-2-deoxyuridine was used to identify label-retaining cells. We found that, in both the 4°C and the 100°C deer antler aqueous extract-injection groups, the anagen phase was extended, while the number of BrdU-incorporated cells was dramatically increased. These results indicate that deer antler aqueous extract promotes hair growth by extending the anagen phase and regulating cell proliferation in the hair follicle region.


Sign in / Sign up

Export Citation Format

Share Document