scholarly journals Comparison of Gene Expression Between Resistant and Susceptible Families Against VPAHPND and Identification of Biomarkers Used for Resistance Evaluation in Litopenaeus vannamei

2021 ◽  
Vol 12 ◽  
Author(s):  
Qian Zhang ◽  
Yang Yu ◽  
Zheng Luo ◽  
Jianhai Xiang ◽  
Fuhua Li

Acute hepatopancreatic necrosis disease (AHPND) has caused a heavy loss to shrimp aquaculture since its outbreak. Vibrio parahaemolyticus (VPAHPND) is regarded as one of the main pathogens that caused AHPND in the Pacific white shrimp Litopenaeus vannamei. In order to learn more about the mechanism of resistance to AHPND, the resistant and susceptible shrimp families were obtained through genetic breeding, and comparative transcriptome approach was used to analyze the gene expression patterns between resistant and susceptible families. A total of 95 families were subjected to VPAHPND challenge test, and significant variations in the resistance of these families were observed. Three pairs of resistant and susceptible families were selected for transcriptome sequencing. A total of 489 differentially expressed genes (DEGs) that presented in at least two pairwise comparisons were screened, including 196 DEGs highly expressed in the susceptible families and 293 DEGs in the resistant families. Among these DEGs, 16 genes demonstrated significant difference in all three pairwise comparisons. Gene set enrichment analysis (GSEA) of all 27,331 expressed genes indicated that some energy metabolism processes were enriched in the resistant families, while signal transduction and immune system were enriched in the susceptible families. A total of 32 DEGs were further confirmed in the offspring of the detected families, among which 19 genes were successfully verified. The identified genes in this study will be useful for clarifying the genetic mechanism of shrimp resistance against Vibrio and will further provide molecular markers for evaluating the disease resistance of shrimp in the breeding program.

2021 ◽  
Vol 6 (2) ◽  
pp. 99
Author(s):  
Nawwar Zawani Mamat ◽  
Norsila Daim ◽  
Nawwar Zawani Mamat

Utilisation of plant proteins to replace fish meal in shrimp feeds has become an important consideration because fish meal is becoming more expensive due to increasing demand worldwide. The potential use of palm kernel meal (PKM) in this study to substitute fish meal in the Pacific white shrimp (Litopenaeus vannamei) diets was evaluated by conducting a 90-day feeding trial. Shrimp juveniles with an initial average weight of 0.5 g, protein content of 10.74±0.70% were randomly distributed into five treatments in triplicates. Four isonitrogenous (approximately 35% protein) diets were formulated to contain 0% (D0), 25% (D25), 50% (D50) and 75% (D75) of PKM replacement and a commercial feed served as control treatment (Control). Results from this study revealed that shrimps fed D25 were comparable with those fed with Control as there was no significant difference (p>0.05) in weight gain and specific growth rate (SGR) between the groups. However, PKM inclusions above 50% showed detrimental effects on the growth performance. The highest total protein percent was observed in shrimp tissues fed with D25 (67.59±0.87%) and D75 showed the lowest protein among the treatments (57.4±0.63%) (p<0.05). Total lipid content was observed high in shrimps fed with Control (4.33±2.96%) and decreased with PKM replacement levels. The highest carbohydrate was found in shrimps fed with D75 (16.75±0.04%) and the lowest was found in shrimps fed with D25 (14.67±0.07%). When PKM is utilised to replace FM, a limit of 25% level should be recommended.


2018 ◽  
Author(s):  
Nikita Mukhitov ◽  
Michael G. Roper

AbstractIn vivo levels of insulin are oscillatory with a period of ~5-10 minutes, implying that the numerous islets of Langerhans within the pancreas are synchronized. While the synchronizing factors are still under investigation, one result of this behavior is expected to be coordinated intracellular [Ca2+] ([Ca2+]i) oscillations throughout the islet population. The role that coordinated [Ca2+]i oscillations have on controlling gene expression within pancreatic islets was examined by comparing gene expression levels in islets that were synchronized using a low amplitude glucose wave and an unsynchronized population. The [Ca2+]i oscillations in the synchronized population were homogeneous and had a significantly lower drift in their oscillation period as compared to unsynchronized islets. This reduced drift in the synchronized population was verified by comparing the drift of in vivo and in vitro profiles from published reports. Microarray profiling indicated a number of Ca2+-dependent genes were differentially regulated between the two islet populations. Gene set enrichment analysis revealed that the synchronized population had reduced expression of gene sets related to protein translation, protein turnover, energy expenditure, and insulin synthesis, while those that were related to maintenance of cell morphology were increased. It is speculated that these gene expression patterns in the synchronized islets results in a more efficient utilization of intra-cellular resources and response to environmental changes.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7381 ◽  
Author(s):  
Zhenlu Wang ◽  
Yuexin Qu ◽  
Xiaolei Zhuo ◽  
Junyi Li ◽  
Jixing Zou ◽  
...  

Background Litopenaeus vannamei is one of the most important aquaculture shrimps in the world and low temperatures present a serious challenge to its survival, growth, and distribution. Methods To investigate their physiological responses during acute cold-stress, L. vannamei were treated under acute cooling conditions from 28 to 13 °C with a cooling rate of 2.5 °C/2 h and were maintained at 13 °C for 12 h. Plasma metabolite concentrations, histological changes, and relative gene expression related to the unfolded protein response (UPR) pathway and apoptosis in the hepatopancreas and the hemocytes of L. vannamei were investigated. Results The results revealed that the concentrations of triglycerides, total cholesterol, and total protein in plasma reached their peaks at 23 °C, and then decreased to their minimum values at 13 °C for 12 h. The activity of alkaline phosphatase in the plasma decreased to its lowest level while the activity of alanine aminotransferase increased to its highest level at 13 °C for 12 h. The hepatic tubules became necrotic and the basement membranes were ruptured at 13 °C for 12 h. The gene expression related to UPR and apoptosis in the hepatopancreas and hemocytes was significantly altered by the decrease in the temperature. Discussion The results revealed that acute cold-stress caused histological damage in the hepatopancreas of L. vannamei, reducing its immunity. The three UPR pathways were involved in the process of acute cold-stress and the response of activating transcription factor 6 to UPR may be faster and more directthan the IRE1 and PERK pathways.


Aquaculture ◽  
2008 ◽  
Vol 275 (1-4) ◽  
pp. 356-360 ◽  
Author(s):  
Jun Zhou ◽  
Wei-Na Wang ◽  
Guang-Zhi Ma ◽  
An-Li Wang ◽  
Wen-Yin He ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document