scholarly journals Glycogen Metabolism and Rheumatoid Arthritis: The Role of Glycogen Synthase 1 in Regulation of Synovial Inflammation via Blocking AMP-Activated Protein Kinase Activation

2018 ◽  
Vol 9 ◽  
Author(s):  
Maohua Shi ◽  
Jingnan Wang ◽  
Youjun Xiao ◽  
Cuicui Wang ◽  
Qian Qiu ◽  
...  
Circulation ◽  
2016 ◽  
Vol 134 (5) ◽  
pp. 405-421 ◽  
Author(s):  
Hong Liu ◽  
Yujin Zhang ◽  
Hongyu Wu ◽  
Angelo D’Alessandro ◽  
Gennady G. Yegutkin ◽  
...  

2019 ◽  
Vol 60 (5) ◽  
pp. 937-952 ◽  
Author(s):  
Anne-Emilie Declèves ◽  
Anna V. Mathew ◽  
Aaron M. Armando ◽  
Xianlin Han ◽  
Edward A. Dennis ◽  
...  

High-fat diet (HFD) causes renal lipotoxicity that is ameliorated with AMP-activated protein kinase (AMPK) activation. Although bioactive eicosanoids increase with HFD and are essential in regulation of renal disease, their role in the inflammatory response to HFD-induced kidney disease and their modulation by AMPK activation remain unexplored. In a mouse model, we explored the effects of HFD on eicosanoid synthesis and the role of AMPK activation in ameliorating these changes. We used targeted lipidomic profiling with quantitative MS to determine PUFA and eicosanoid content in kidneys, urine, and renal arterial and venous circulation. HFD increased phospholipase expression as well as the total and free pro-inflammatory arachidonic acid (AA) and anti-inflammatory DHA in kidneys. Consistent with the parent PUFA levels, the AA- and DHA-derived lipoxygenase (LOX), cytochrome P450, and nonenzymatic degradation (NE) metabolites increased in kidneys with HFD, while EPA-derived LOX and NE metabolites decreased. Conversely, treatment with 5-aminoimidazole-4-carboxamide-1-β-D-furanosyl 5′-monophosphate (AICAR), an AMPK activator, reduced the free AA and DHA content and the DHA-derived metabolites in kidney. Interestingly, kidney and circulating AA, AA metabolites, EPA-derived LOX, and NE metabolites are increased with HFD; whereas, DHA metabolites are increased in kidney in contrast to their decreased circulating levels with HFD. Together, these changes showcase HFD-induced pro- and anti-inflammatory eicosanoid dysregulation and highlight the role of AMPK in correcting HFD-induced dysregulated eicosanoid pathways.


Endocrinology ◽  
2006 ◽  
Vol 147 (11) ◽  
pp. 5170-5177 ◽  
Author(s):  
S. Fediuc ◽  
M. P. Gaidhu ◽  
R. B. Ceddia

The aim of this study was to investigate the effects of 5-aminoimidasole-4-carboxamide-1-β-d-ribofuranoside (AICAR)-induced AMP-activated protein kinase activation on glycogen metabolism in soleus (slow twitch, oxidative) and epitrochlearis (fast twitch, glycolytic) skeletal muscles. Isolated soleus and epitrochlearis muscles were incubated in the absence or presence of insulin (100 nm), AICAR (2 mm), and AICAR plus insulin. In soleus muscles exposed to insulin, glycogen synthesis and glycogen content increased 6.4- and 1.3-fold, respectively. AICAR treatment significantly suppressed (∼60%) insulin-stimulated glycogen synthesis and completely prevented the increase in glycogen content induced by insulin. AICAR did not affect either basal or insulin-stimulated glucose uptake but significantly increased insulin-stimulated (∼20%) lactate production in soleus muscles. Interestingly, basal glucose uptake was significantly increased (∼1.4-fold) in the epitrochlearis muscle, even though neither basal nor insulin-stimulated rates of glycogen synthesis, glycogen content, and lactate production were affected by AICAR. We also report the novel evidence that AICAR markedly reduced insulin-induced Akt-Thr308 phosphorylation after 15 and 30 min exposure to insulin, which coincided with a marked reduction in glycogen synthase kinase 3 (GSK)-3α/β phosphorylation. Importantly, phosphorylation of glycogen synthase was increased by AICAR treatment 45 min after insulin stimulation. Our results indicate that AICAR-induced AMP-activated protein kinase activation caused a time-dependent reduction in Akt308 phosphorylation, activation of glycogen synthase kinase-3α/β, and the inactivation of glycogen synthase, which are compatible with the acute reduction in insulin-stimulated glycogen synthesis in oxidative but not glycolytic skeletal muscles.


Sign in / Sign up

Export Citation Format

Share Document