scholarly journals NOD2 and TLR2 Signal via TBK1 and PI31 to Direct Cross-Presentation and CD8 T Cell Responses

2019 ◽  
Vol 10 ◽  
Author(s):  
Daniele Corridoni ◽  
Seiji Shiraishi ◽  
Thomas Chapman ◽  
Tessa Steevels ◽  
Daniele Muraro ◽  
...  
Blood ◽  
2013 ◽  
Vol 122 (1) ◽  
pp. 55-60 ◽  
Author(s):  
Monique L. Ong ◽  
Matthew E. Wikstrom ◽  
Peter Fleming ◽  
Marie J. Estcourt ◽  
Paul J. Hertzog ◽  
...  

Key Points Fully functional CD8 T-cell responses, control of infection, and protection from organ pathology are attained without cross-presentation. Direct presentation generates responses that limit disease and ensure host survival despite the presence of immunomodulatory viral proteins.


2004 ◽  
Vol 200 (3) ◽  
pp. 297-306 ◽  
Author(s):  
Amy Morck Thomas ◽  
Lynn M. Santarsiero ◽  
Eric R. Lutz ◽  
Todd D. Armstrong ◽  
Yi-Cheng Chen ◽  
...  

Tumor-specific CD8+ T cells can potentially be activated by two distinct mechanisms of major histocompatibility complex class I–restricted antigen presentation as follows: direct presentation by tumor cells themselves or indirect presentation by professional antigen-presenting cells (APCs). However, controversy still exists as to whether indirect presentation (the cross-priming mechanism) can contribute to effective in vivo priming of tumor-specific CD8+ T cells that are capable of eradicating cancer in patients. A clinical trial of vaccination with granulocyte macrophage–colony stimulating factor–transduced pancreatic cancer lines was designed to test whether cross-presentation by locally recruited APCs can activate pancreatic tumor-specific CD8+ T cells. Previously, we reported postvaccination delayed-type hypersensitivity (DTH) responses to autologous tumor in 3 out of 14 treated patients. Mesothelin is an antigen demonstrated previously by gene expression profiling to be up-regulated in most pancreatic cancers. We report here the consistent induction of CD8+ T cell responses to multiple HLA-A2, A3, and A24-restricted mesothelin epitopes exclusively in the three patients with vaccine-induced DTH responses. Importantly, neither of the vaccinating pancreatic cancer cell lines expressed HLA-A2, A3, or A24. These results provide the first direct evidence that CD8 T cell responses can be generated via cross-presentation by an immunotherapy approach designed to recruit APCs to the vaccination site.


Blood ◽  
2008 ◽  
Vol 112 (9) ◽  
pp. 3713-3722 ◽  
Author(s):  
Juliette Mouriès ◽  
Gabriel Moron ◽  
Géraldine Schlecht ◽  
Nicolas Escriou ◽  
Gilles Dadaglio ◽  
...  

Abstract Cross-presentation is a crucial mechanism in tumoral and microbial immunity because it allows internalized cell associated or exogenous antigens (Ags) to be delivered into the major histocompatibility complex I pathway. This pathway is important for the development of CD8+ T-cell responses and for the induction of tolerance. In mice, cross-presentation is considered to be a unique property of CD8α+ conventional dendritic cells (DCs). Here we show that splenic plasmacytoid DCs (pDCs) efficiently capture exogenous Ags in vivo but are not able to cross-present these Ags at steady state. However, in vitro and in vivo stimulation by Toll-like receptor-7, or -9 or viruses licenses pDCs to cross-present soluble or particulate Ags by a transporter associated with antigen processing-dependent mechanism. Induction of cross-presentation confers to pDCs the ability to generate efficient effector CD8+ T-cell responses against exogenous Ags in vivo, showing that pDCs may play a crucial role in induction of adaptive immune responses against pathogens that do not infect tissues of hemopoietic origin. This study provides the first evidence for an in vivo role of splenic pDCs in Ag cross-presentation and T-cell cross-priming and suggests that pDCs may constitute an attractive target to boost the efficacy of vaccines based on cytotoxic T lymphocyte induction.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A648-A648
Author(s):  
Kelly-Anne Masterman ◽  
Oscar Haigh ◽  
Kirsteen Tullett ◽  
Ingrid Leal-Rojas ◽  
Carina Walpole ◽  
...  

BackgroundDendritic cells (DC) are crucial for the efficacy of cancer vaccines, but current vaccines do not harness the key cDC1 subtype required for effective CD8+ T cell mediated tumor immune responses. Vaccine immunogenicity could be enhanced by specific delivery of immunogenic tumor antigens to CD141+ DC, the human cDC1 equivalent. CD141+ DC exclusively express the C-type-lectin-like receptor CLEC9A, which is important for the regulation of CD8+ T cell responses. This study developed a new vaccine that harnesses a human anti-CLEC9A antibody to specifically deliver the immunogenic tumor antigen, NY-ESO-1 to human CD141+ DC. The ability of the CLEC9A-NY-ESO-1 antibody to activate NY-ESO-1 specific naïve and memory CD8+ T cells was examined and compared to a vaccine comprised of a human DEC-205-NY-ESO-1 antibody that targets all human DC.MethodsHuman anti-CLEC9A, anti-DEC-205 and isotype control IgG4 antibodies were genetically fused to NY-ESO-1 polypeptide. Cross-presentation to NY-ESO-1- epitope specific CD8+ T cells and reactivity of T cell responses in melanoma patients was assessed by IFNγ production following incubation of CD141+ DC and patient peripheral blood mononuclear cells with targeting antibodies. Humanized mice containing human DC subsets and a repertoire of naïve NY-ESO-1-specific CD8+ T cells were used to investigate naïve T cell priming. T cell effector function was measured by expression of IFNγ, MIP-1β, TNF and CD107a and by lysis of target tumor cells.ResultsCLEC9A-NY-ESO-1 Ab were effective at mediating delivery and cross-presentation of multiple NY-ESO-1 epitopes by CD141+ DC for activation of NY-ESO-1-specific CD8+ T cells. When benchmarked to NY-ESO-1 conjugated to an untargeted control antibody or to anti-human DEC-205, CLEC9A-NY-ESO-1 was superior at ex vivo reactivation of NY-ESO-1-specific T cell responses in melanoma patients. Moreover, CLEC9A-NY-ESO-1 induced priming of naïve NY-ESO-1-specific CD8+ T cells with polyclonal effector function and potent tumor killing capacity in vitro.ConclusionsThese data advocate human CLEC9A-NY-ESO-1 antibody as an attractive strategy for specific targeting of CD141+ DC to enhance tumour immunogenicity in NY-ESO-1-expressing malignancies.Ethics ApprovalWritten informed consent was obtained for human sample acquisition in line with standards established by the Declaration of Helsinki. Study approval was granted by the Mater Human Research Ethics Committee (HREC13/MHS/83 and HREC13/MHS/86) and The U.S. Army Medical Research and Materiel Command (USAMRMC) Office of Research Protections, Human Research Protection Office (HRPO; A-18738.1, A-18738.2, A-18738.3). All animal experiments were approved by the University of Queensland Animal Ethics Committee and conducted in accordance with the Australian Code for the Care and Use of Animals for Scientific Purposes in addition to the laws of the United States and regulations of the Department of Agriculture.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 98 ◽  
Author(s):  
Derek Theisen ◽  
Kenneth Murphy

The cDC1 subset of classical dendritic cells is specialized for priming CD8 T cell responses through the process of cross-presentation. The molecular mechanisms of cross-presentation remain incompletely understood because of limited biochemical analysis of rare cDC1 cells, difficulty in their genetic manipulation, and reliance onin vitrosystems based on monocyte- and bone-marrow-derived dendritic cells. This review will discuss cross-presentation from the perspective of studies with monocyte- or bone-marrow-derived dendritic cells while highlighting the need for future work examining cDC1 cells. We then discuss the role of cDC1s as a cellular platform to combine antigen processing for class I and class II MHC presentation to allow the integration of “help” from CD4 T cells during priming of CD8 T cell responses.


2021 ◽  
Author(s):  
◽  
Taryn Louise Osmond

<p>Splenic CD8α⁺ dendritic cells (DCs) have been described as key antigen presenting cells for the induction of CD8⁺ T cell responses to circulating antigen. This is through a heightened capacity to acquire and present the antigens via the process of cross-presentation, expression of high levels of the co-stimulatory and adhesion molecules required to stimulate CD8⁺ T cells, and the capacity to release high levels of the cytokines required to drive differentiation of CD8⁺ T cells into cytotoxic T lymphocytes (CTLs). However, recent research has indicated that the splenic CD8α⁺ DC population is more heterogeneous than originally thought. A previous study from my own laboratory suggested that a population of CD8α⁺ DCs that express the c-type lectin langerin primarily possess the heightened functions previously attributed to the total CD8α⁺ population. Therefore, the aim of this thesis research was to explore this subset of DCs in more detail, with specific emphasis on gaining mechanistic insight into their ability to elicit CD8⁺ T cell responses to circulating proteins. In the first section of this thesis, the hypothesis that the splenic langerin⁺ CD8α⁺ DCs were the critical subset involved in the induction of strong systemic CD8⁺ T cell responses to circulating antigen was tested in detail. This was examined using a genetically modified mouse model in which langerin-expressing cells could be easily identified and/or specifically depleted. It was first shown that the induction of CD8⁺ T cell responses to the model antigen ovalbumin was dependent on entry into the spleen in the presence of appropriate stimulation, which in these studies was provided by agonists for the toll-like receptors (TLRs) and/or signals from innate-like lymphocytes called natural killer T (NKT) cells. The primary targets for these signals were shown to be splenic langerin⁺ CD8α⁺ DCs, as CD8⁺ T cell responses were significantly reduced in hosts depleted of these cells within the spleen. Furthermore, agonists for TLRs that were not expressed by langerin⁺ CD8α⁺ DCs failed to enhance T cell responses. The langerin⁺ CD8α⁺ DCs were shown to be located in the marginal zone of the spleen, where they could readily screen the blood for antigens, and their function was critical to the induction of CD8⁺ T cell responses within six hours of antigen delivery. Interestingly, other local langerin-negative antigen presenting cells (APCs) were shown to be capable of cross-presentation, but with significantly reduced capacity to prime CD8⁺ T cell responses. Therefore, in the second section of this thesis the hypothesis that the langerin-negative APCs were capable of contributing to CD8⁺ T cell responses with appropriately timed stimuli was investigated. One of the downstream effects of inducing NKT cell activation at the time of priming was shown to be the “pre-conditioning” of langerin-negative DCs, allowing them to respond strongly to subsequent TLR ligation. Using SiglecH-DTR mice, it was shown that plasmacytoid DCs (which are langerin-negative) were pre-conditioned by NKT cell activation, allowing them to respond more actively to the delayed TLR stimulation by producing significantly enhanced levels of IFN-α. This factor was also potentially responsible for “feeding back” to the CD8α⁺ DCs (including langerin-expressing CD8α⁺ DCs), to enhance their function, as indicated by increases in cytokine production. Significantly, the major langerin-negative DC populations, defined as CD8α⁻ DCs, were pre-conditioned to have an enhanced cytokine release response to subsequent stimulation through TLR7, a receptor not expressed by langerin-positive DCs. This enhanced ability to respond to TLR7 ligation permitted these langerin-negative APCs to contribute to increased CD8⁺ T cell accumulation, with enhanced functional activity. Importantly, the CD8⁺ T cell response induced remained significantly dependent on initial cross-priming by langerin⁺ CD8α⁺ DCs, and it was only through pre-conditioning that langerinnegative APCs could contribute to enhancing the T cell response. In the third section of this thesis, the hypothesis that the CD8⁺ T cell responses generated in the presence of langerin⁺ CD8α⁺ DCs were phenotypically and functionally distinct from those responses generated in their absence was tested. No obvious differences were seen in CD8⁺ T cell homing, memory phenotype, restimulatory capacity, and expression of key molecules involved in metabolic function, survival and cytolytic function. However, in vivo cytotoxic function several weeks after priming was comparable, suggesting that this function was not related to initial burst size, providing some evidence of difference in function between CD8⁺ T cells primed in the presence or absence of langerin⁺ CD8α⁺ DCs. In summary, the splenic langerin⁺ CD8α⁺ DCs are the major subset responsible for cross-priming CD8⁺ T cell responses to circulating antigen, and for interpreting multiple stimulatory signals for enhancing the response. However, effective CD8⁺ T cell responses can be generated in their absence, particularly when antigens are provided in the context of appropriately temporally phased stimuli.</p>


2016 ◽  
Vol 196 (10) ◽  
pp. 4014-4029 ◽  
Author(s):  
Lorena M. Coria ◽  
Andrés E. Ibañez ◽  
Mercedes Tkach ◽  
Florencia Sabbione ◽  
Laura Bruno ◽  
...  

Blood ◽  
2010 ◽  
Vol 116 (10) ◽  
pp. 1685-1697 ◽  
Author(s):  
Eynav Klechevsky ◽  
Anne-Laure Flamar ◽  
Yanying Cao ◽  
Jean-Philippe Blanck ◽  
Maochang Liu ◽  
...  

Abstract We evaluated human CD8+ T-cell responses generated by targeting antigens to dendritic cells (DCs) through various lectin receptors. We found the immunoreceptor tyrosine-based inhibitory motif-containing DC immunoreceptor (DCIR) to mediate potent cross-presentation. A single exposure to a low dose of anti-DCIR–antigen conjugate initiated antigen-specific CD8+ T-cell immunity by all human DC subsets including ex vivo–generated DCs, skin-isolated Langerhans cells, and blood myeloid DCs and plasmacytoid DCs. The delivery of influenza matrix protein (FluMP) through DCIR resulted in expansion of FluMP-specific memory CD8+ T cells. Enhanced specific CD8+ T-cell responses were observed when an antigen was delivered to the DCs via DCIR, compared with those induced by a free antigen, or antigen conjugated to a control monoclonal antibody or delivered via DC-SIGN, another lectin receptor. DCIR targeting also induced primary CD8+ T-cell responses against self (MART-1) and viral (HIV gag) antigens. Addition of Toll-like receptor (TLR) 7/8 agonist enhanced DCIR-mediated cross-presentation as well as cross-priming, particularly when combined with a CD40 signal. TLR7/8 activation was associated with increased expansion of the primed CD8+ T cells, high production of interferon-γ and tumor necrosis factor-α, and reduced levels of type 2–associated cytokines. Thus, antigen targeting via the human DCIR receptor allows activation of specific CD8+ T-cell immunity.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 612 ◽  
Author(s):  
Cheol Gyun Kim ◽  
Yoon-Chul Kye ◽  
Cheol-Heui Yun

Explosive growth in nanotechnology has merged with vaccine development in the battle against diseases caused by bacterial or viral infections and malignant tumors. Due to physicochemical characteristics including size, viscosity, density and electrostatic properties, nanomaterials have been applied to various vaccination strategies. Nanovaccines, as they are called, have been the subject of many studies, including review papers from a material science point of view, although a mode of action based on a biological and immunological understanding has yet to emerge. In this review, we discuss nanovaccines in terms of CD8+ T cell responses, which are essential for antiviral and anticancer therapies. We focus mainly on the role and mechanism, with particular attention to the functional aspects, of nanovaccines in inducing cross-presentation, an unconventional type of antigen-presentation that activates CD8+ T cells upon administration of exogenous antigens, in dendritic cells followed by activation of antigen-specific CD8+ T cell responses. Two major intracellular mechanisms that nanovaccines harness for cross-presentation are described; one is endosomal swelling and rupture, and the other is membrane fusion. Both processes eventually allow exogenous vaccine antigens to be exported from phagosomes to the cytosol followed by loading on major histocompatibility complex class I, triggering clonal expansion of CD8+ T cells. Advancement of nanotechnology with an enhanced understanding of how nanovaccines work will contribute to the design of more effective and safer nanovaccines.


Sign in / Sign up

Export Citation Format

Share Document