scholarly journals The Multitasking Fasciola gigantica Cathepsin B Interferes With Various Functions of Goat Peripheral Blood Mononuclear Cells in vitro

2019 ◽  
Vol 10 ◽  
Author(s):  
Dan Chen ◽  
Ai-Ling Tian ◽  
Jun-Ling Hou ◽  
Jie-Xi Li ◽  
XiaoWei Tian ◽  
...  
Pathogens ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 758 ◽  
Author(s):  
Ai-Ling Tian ◽  
Xiaowei Tian ◽  
Dan Chen ◽  
Mingmin Lu ◽  
Guillermo Calderón-Mantilla ◽  
...  

The liver fluke Fasciola gigantica has a remarkable ability to establish a long-term infection within the hepatobiliary system of the mammalian definitive host. F. gigantica achieves this by producing excretory–secretory molecules, which have immunomodulatory activities. In an effort to elucidate the immunomodulatory functions of F. gigantica thioredoxin peroxidase protein (FgTPx), we expressed recombinant FgTPx (rFgTPx) in Escherichia coli bacteria and examined its effects on several functions of goat peripheral blood mononuclear cells (PBMCs) in vitro. Sequence analysis revealed that FgTPx is related to a thioredoxin-like superfamily. Western blot analysis showed that rFgTPx was recognized by the sera of goats experimentally infected by F. gigantica. The specific binding of rFgTPx protein to the surface of goat PBMCs was demonstrated by immunofluorescence staining. We investigated the influence of serial concentrations of rFgTPx on various functions of goat PBMCs. All concentrations of rFgTPx increased the secretion of interleukin-2 (IL-2), IL-4, IL-10, IL-17, transforming growth factor-beta (TGF-β), and interferon gamma (IFN-γ), but inhibited PBMC proliferation, migration, and monocyte phagocytosis. Goat PBMCs exposed to 20–40 μg/mL of rFgTPx secreted increased levels of nitric oxide (NO), and 10–40 μg/mL of rFgTPx promoted cell apoptosis. These findings indicate that rFgTPx influences various functions of goat PBMCs by interacting with a large number of cellular targets, ultimately to promote the parasite’s survival. The roles of rFgTPx and their interacting proteins warrant further investigation.


Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1037
Author(s):  
Patricia Ruiz-Limon ◽  
Maria L. Ladehesa-Pineda ◽  
Clementina Lopez-Medina ◽  
Chary Lopez-Pedrera ◽  
Maria C. Abalos-Aguilera ◽  
...  

Endothelial dysfunction (ED) is well known as a process that can lead to atherosclerosis and is frequently presented in radiographic axial spondyloarthritis (r-axSpA) patients. Here, we investigated cellular and molecular mechanisms underlying r-axSpA-related ED, and analyzed the potential effect of peripheral blood mononuclear cells (PBMCs) in promoting endothelial injury in r-axSpA. A total of 30 r-axSpA patients and 32 healthy donors (HDs) were evaluated. The endothelial function, inflammatory and atherogenic profile, and oxidative stress were quantified. In vitro studies were designed to evaluate the effect of PBMCs from r-axSpA patients on aberrant endothelial activation. Compared to HDs, our study found that, associated with ED and the plasma proatherogenic profile present in r-axSpA, PBMCs from these patients displayed a pro-oxidative, proinflammatory, and proatherogenic phenotype, with most molecular changes noticed in lymphocytes. Correlation studies revealed the relationship between this phenotype and the microvascular function. Additional in vitro studies confirmed that PBMCs from r-axSpA patients promoted endothelial injury. Altogether, this study suggests the relevance of r-axSpA itself as a strong and independent cardiovascular risk factor, contributing to a dysfunctional endothelium and atherogenic status by aberrant activation of PBMCs. Lymphocytes could be the main contributors in the development of ED and subsequent atherosclerosis in this pathology.


2021 ◽  
Vol 134 ◽  
pp. 58-63
Author(s):  
Matheus Fujimura Soares ◽  
Larissa Martins Melo ◽  
Jaqueline Poleto Bragato ◽  
Amanda de Oliveira Furlan ◽  
Natália Francisco Scaramele ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document