scholarly journals Interleukin-19 Abrogates Experimental Autoimmune Encephalomyelitis by Attenuating Antigen-Presenting Cell Activation

2021 ◽  
Vol 12 ◽  
Author(s):  
Hiroshi Horiuchi ◽  
Bijay Parajuli ◽  
Hiroyasu Komiya ◽  
Yuki Ogawa ◽  
Shijie Jin ◽  
...  

Interleukin-19 (IL-19) acts as a negative-feedback regulator to limit proinflammatory response of macrophages and microglia in autocrine/paracrine manners in various inflammatory diseases. Multiple sclerosis (MS) is a major neuroinflammatory disease in the central nervous system (CNS), but it remains uncertain how IL-19 contributes to MS pathogenesis. Here, we demonstrate that IL-19 deficiency aggravates experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, by promoting IL-17-producing helper T cell (Th17 cell) infiltration into the CNS. In addition, IL-19-deficient splenic macrophages expressed elevated levels of major histocompatibility complex (MHC) class II, co-stimulatory molecules, and Th17 cell differentiation-associated cytokines such as IL-1β, IL-6, IL-23, TGF-β1, and TNF-α. These observations indicated that IL-19 plays a critical role in suppression of MS pathogenesis by inhibiting macrophage antigen presentation, Th17 cell expansion, and subsequent inflammatory responses. Furthermore, treatment with IL-19 significantly abrogated EAE. Our data suggest that IL-19 could provide significant therapeutic benefits in patients with MS.

2020 ◽  
Author(s):  
Hiroshi Horiuchi ◽  
Bijay Parajuli ◽  
Hiroyasu Komiya ◽  
Yuki Ogawa ◽  
Jin Shijie ◽  
...  

AbstractInterleukin-19 (IL-19) acts as an anti-inflammatory cytokine in various inflammatory diseases. Multiple sclerosis (MS) is a major neuroinflammatory disease in the central nervous system, but it remains uncertain how IL-19 contributes to MS pathogenesis. Here, we demonstrate that IL-19 deficiency aggravates experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, by promoting IL-17–producing helper T cell (Th17 cell) infiltration into the central nervous system. In addition, IL-19–deficient splenic macrophages expressed elevated levels of major histocompatibility complex class II, co-stimulatory molecules, and Th17 cell differentiation–associated cytokines such as IL-1β, IL-6, IL-23, TGF-β1, and TNF-α. These observations indicated that IL-19 plays a critical role in suppression of MS pathogenesis by inhibiting macrophage antigen presentation, Th17 cell expansion, and subsequent inflammatory responses. Furthermore, treatment with IL-19 significantly abrogated EAE. Our data suggest that IL-19 could provide significant therapeutic benefits in patients with MS.


2009 ◽  
Vol 183 (11) ◽  
pp. 7259-7267 ◽  
Author(s):  
Ann J. Canonigo-Balancio ◽  
Camille Fos ◽  
Thomas Prod'homme ◽  
Stéphane Bécart ◽  
Amnon Altman

2021 ◽  
Vol 12 ◽  
Author(s):  
Huan-Li Yang ◽  
Xiao-Wu Shi

Silybin, a peculiar flavonoid compound derived from the fruit and seeds of Silybum marianum, exhibits strong anti-inflammatory activities. In the present study, we found that silybin effectively alleviated experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), via inhibition of dendritic cell (DC) activation and Th17 cell differentiation. Silybin treatment greatly ameliorated the disease severity and significantly declined inflammation and demyelination of the central nervous system (CNS) of EAE mice. Consistent with the disease development, silybin-treated bone marrow-derived DCs (BM-DCs) exhibited reduced costimulatory molecules (e.g., CD80 and CD86) and MHC II expression. These results demonstrated the distinguished bioactivity of silybin for suppressing DC activation, inhibiting pathogenic Th17 inflammatory cell responses, and, eventually, alleviating EAE severity. Taken together, our results show that silybin has high potential for the development of a novel therapeutic agent for the treatment of autoimmune diseases such as MS.


2019 ◽  
Vol 8 (2) ◽  
pp. 162 ◽  
Author(s):  
Pece Kocovski ◽  
Xiangrui Jiang ◽  
Claretta D’Souza ◽  
Zhenjiang Li ◽  
Phuc Dang ◽  
...  

The neuropsychiatric symptoms of multiple sclerosis (MS), such as anxiety and depression, can result from disease activity itself as well as psychological reaction to an unfavorable diagnosis. Accordingly, the literature reports evidence of increased anxiety-like behavior in experimental autoimmune encephalomyelitis (EAE), an accepted MS model. Due to the recently described critical role of platelets in inflammation and autoimmune disease, we examined the relationship between platelets, inflammation, and anxiety-like behavior in EAE. In the elevated plus maze, EAE-induced C57BL/6J mice showed decreased time spent in the open arms relative to vehicle-only controls, demonstrating an increase in anxiety-like behavior. This effect occurred in the presence of platelet–neuron association, but absence of lymphocytic infiltration, in the hippocampal parenchyma. Platelet depletion at the pre-clinical disease stage, using antibody-mediated lysis prevented the EAE-induced increase in anxiety-like behavior, while no significant difference in distance moved was recorded. Furthermore, platelet depletion was also associated with reduction of the pro-inflammatory environment to control levels in the hippocampus and prevention of EAE disease symptomology. These studies demonstrate the high efficacy of a platelet-targeting approach in preventing anxiety-like symptoms and clinical manifestations of EAE and have implications for the treatment of neuropsychiatric symptoms in MS.


Sign in / Sign up

Export Citation Format

Share Document