scholarly journals The Outcome of Neutrophil-T Cell Contact Differs Depending on Activation Status of Both Cell Types

2021 ◽  
Vol 12 ◽  
Author(s):  
Danielle Minns ◽  
Katie J. Smith ◽  
Gareth Hardisty ◽  
Adriano G. Rossi ◽  
Emily Gwyer Findlay

Neutrophils and T cells exist in close proximity in lymph nodes and inflamed tissues during health and disease. They are able to form stable interactions, with profound effects on the phenotype and function of the T cells. However, the outcome of these effects are frequently contradictory; in some systems neutrophils suppress T cell proliferation, in others they are activatory or present antigen directly. Published protocols modelling these interactions in vitro do not reflect the full range of interactions found in vivo; they do not examine how activated and naïve T cells differentially respond to neutrophils, or whether de-granulating or resting neutrophils induce different outcomes. Here, we established a culture protocol to ask these questions with human T cells and autologous neutrophils. We find that resting neutrophils suppress T cell proliferation, activation and cytokine production but that de-granulating neutrophils do not, and neutrophil-released intracellular contents enhance proliferation. Strikingly, we also demonstrate that T cells early in the activation process are susceptible to suppression by neutrophils, while later-stage T cells are not, and naïve T cells do not respond at all. Our protocol therefore allows nuanced analysis of the outcome of interaction of these cells and may explain the contradictory results observed previously.

2020 ◽  
Author(s):  
Danielle Minns ◽  
Katie J Smith ◽  
Gareth Hardisty ◽  
Adriano Rossi ◽  
Emily Gwyer Findlay

AbstractNeutrophils and T cells exist in close proximity in lymph nodes and inflamed tissues during health and disease. They are able to form stable interactions, with profound effects on the phenotype and function of the T cells. However, the outcome of these effects are frequently contradictory; in some systems neutrophils suppress T cell proliferation, in others they are activatory or present antigen directly. Published protocols modelling these interactions in vitro do not reflect the full range of interactions found in vivo; they do not examine how activated and naïve T cells differentially respond to neutrophils, or whether de-granulating or resting neutrophils induce different outcomes. Here, we established a culture protocol to ask these questions with human T cells and autologous neutrophils. We find that resting neutrophils suppress T cell proliferation, activation and cytokine production but that de-granulating neutrophils do not, and neutrophil released intracellular contents are pro-activatory. Strikingly, we also demonstrate that T cells early in the activation process are susceptible to suppression by neutrophils, while later-stage T cells are not, and naïve T cells do not respond at all. Our protocol therefore allows nuanced analysis of the outcome of interaction of these cells and may explain contradictory results observed previously.


2011 ◽  
Vol 90 (3) ◽  
pp. 621-628 ◽  
Author(s):  
Benigno Rodriguez ◽  
Douglas A. Bazdar ◽  
Nicholas Funderburg ◽  
Robert Asaad ◽  
Angel A. Luciano ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4112-4112
Author(s):  
Bitao Liang ◽  
Casper Paludan ◽  
Matthew Downey ◽  
Craig Lewis ◽  
Ryhor Harbacheuski ◽  
...  

Abstract Placenta Derived Adherent Cells (PDAC) are multipotent progenitor cells derived from human placental tissues. Previously we have reported that PDACs could suppress T-cell proliferation when added to in-vitro mixed lymphocyte reactions (PDAC-MLR) (Paludan C. et al, Blood. (ASH Annual Meeting Abstracts) 2006 108: Abstract 1737). Here we present aspects of the mechanism of this PDAC suppression property. We have found that PDACs modify cytokine production in the PDAC-MLR reaction in comparison to the MLR; TNF-α and IFN-γ are reduced 75% and 30% while TGF-β production is significantly increased. We have used a transwell assay system to investigate the cell-contact-dependency of the effects of PDACs on T-cell proliferation. The assay system comprised combinations of the MLR in the top chamber together with the PDAC-MLR, PDACs plus naive T cells or PDACs alone in the bottom chamber. Maximum inhibition of T cell proliferation of the MLR in the top insert could be achieved by placing the PDAC-MLR co-culture in the bottom chamber. Minimum suppression was obtained when placing PDACs plus naive T cells or PDACs alone in the bottom chamber. PDAC-MLR conditioned media could partially suppress the MLR reaction. Addition of L-tryptophan into the MLR with PDAC conditioned media completely abolished PDAC-induced suppression of T cell proliferation. Likewise, the addition of the 1-methyl tryptophan to the PDAC-MLR reaction could abolish the PDAC-induced suppression. These results suggested that the suppression of the MLR by PDACs was possibly due to the depletion of the essential amino acid L-tryptophan which could be due to up-regulation of indoleamine 2,3-dioxygenase (IDO). Quantitative RT-PCR analysis of IDO gene expression revealed that IDO was up-regulated by about 4000-fold when PDACs were co-cultured with activated T cells, but not when co-cultured with naive T cells. Experiments are ongoing to confirm the causative role of IDO, and other factors, in PDAC-suppression of T-cell proliferation. In summary, we believe that soluble factors including the production of pro-inflammatory cytokines may contribute to PDAC suppression of the MLR, that induction of soluble factors from PDACs is significantly augmented by T-cell activation and that IDO expression by PDACs during the PDAC-MLR reaction plays a significant and direct role in suppression of T cell proliferation by PDACs.


Blood ◽  
2012 ◽  
Vol 119 (26) ◽  
pp. 6268-6277 ◽  
Author(s):  
Sabrina Weissmüller ◽  
Linda Y. Semmler ◽  
Ulrich Kalinke ◽  
Stefan Christians ◽  
Jan Müller-Berghaus ◽  
...  

TGN1412, a superagonistic CD28-specific antibody, was shown to require Fc-cross-linking or immobilization as a prerequisite to mediate T-cell proliferation and cytokine release in vitro. We used primary human umbilical vein endothelial cells (HUVECs) to study their ability to induce activation of TGN1412-treated T cells. We confirmed that peripheral primary human T cells do not show activation upon stimulation with soluble TGN1412 alone. Nevertheless, cocultivation of TGN1412-treated T cells with HUVECs induced T-cell activation that was further enhanced using cytokine prestimulated HUVECs. Unexpectedly, Fc-FcγR interaction was dispensable for endothelial cell–mediated proliferation of TGN1412-treated T cells. Transwell-culture assays showed that TGN1412-treated T cells need direct cell-to-cell contact to HUVECs to induce proliferation. We found that costimulatory ICOS-LICOS interaction between T cells and endothelial cells is critically involved in TGN1412-mediated effects. Blocking LICOS reduced TGN1412-mediated T-cell proliferation significantly, whereas recombinant LICOS fully conferred TGN1412-mediated T-cell proliferation. Of note, cytokine stimulation enhanced LICOS expression on HUVECs and ICOS-LICOS interaction up-regulated ICOS expression on TGN1412-treated T cells. Hence, we provide a model of positive feedback conferred by ICOS-LICOS interaction between TGN1412-treated T cells and endothelial cells.


1992 ◽  
Vol 176 (5) ◽  
pp. 1431-1437 ◽  
Author(s):  
M Croft ◽  
D D Duncan ◽  
S L Swain

Because of the low frequency of T cells for any particular soluble protein antigen in unprimed animals, the requirements for naive T cell responses in specific antigens have not been clearly delineated and they have been difficult to study in vitro. We have taken advantage of mice transgenic for the V beta 3/V alpha 11 T cell receptor (TCR), which can recognize a peptide of cytochrome c presented by IEk. 85-90% of CD4+ T cells in these mice express the transgenic TCR, and we show that almost all such V beta 3/V alpha 11 receptor-positive cells have a phenotype characteristic of naive T cells, including expression of high levels of CD45RB, high levels of L-selectin (Mel-14), low levels of CD44 (Pgp-1), and secretion of interleukin 2 (IL-2) as the major cytokine. Naive T cells, separated on the basis of CD45RB high expression, gave vigorous responses (proliferation and IL-2 secretion) to peptide antigen presented in vitro by a mixed antigen-presenting cell population. At least 50% of the T cell population appeared to respond, as assessed by blast transformation, entry into G1, and expression of increased levels of CD44 by 24 h. Significant contributions to the response by contaminating memory CD4+ cells were ruled out by demonstrating that the majority of the CD45RB low, L-selectin low, CD44 high cells did not express the V beta 3/V alpha 11 TCR and responded poorly to antigen. We find that proliferation and IL-2 secretion of the naive CD4 cells is minimal when resting B cells present peptide antigen, and that both splenic and bone marrow-derived macrophages are weak stimulators. Naive T cells did respond well to high numbers of activated B cells. However, dendritic cells were the most potent stimulators of proliferation and IL-2 secretion at low cell numbers, and were far superior inducers of IL-2 at higher numbers. These studies establish that naive CD4 T cells can respond vigorously to soluble antigen and indicate that maximal stimulation can be achieved by presentation of antigen on dendritic cells. This model should prove very useful in further investigations of activation requirements and functional characteristics of naive helper T cells.


2020 ◽  
Vol 11 ◽  
Author(s):  
Christian Binder ◽  
Felix Sellberg ◽  
Filip Cvetkovski ◽  
Erik Berglund ◽  
David Berglund

Antibodies are commonly used in organ transplant induction therapy and to treat autoimmune disorders. The effects of some biologics on the human immune system remain incompletely characterized and a deeper understanding of their mechanisms of action may provide useful insights for their clinical application. The goal of this study was to contrast the mechanistic properties of siplizumab with Alemtuzumab and rabbit Anti-Thymocyte Globulin (rATG). Mechanistic assay systems investigating antibody-dependent cell-mediated cytotoxicity, antibody-dependent cell phagocytosis and complement-dependent cytotoxicity were used to characterize siplizumab. Further, functional effects of siplizumab, Alemtuzumab, and rATG were investigated in allogeneic mixed lymphocyte reaction. Changes in T cell activation, T cell proliferation and frequency of naïve T cells, memory T cells and regulatory T cells induced by siplizumab, Alemtuzumab and rATG in allogeneic mixed lymphocyte reaction were assessed via flow cytometry. Siplizumab depleted T cells, decreased T cell activation, inhibited T cell proliferation and enriched naïve and bona fide regulatory T cells. Neither Alemtuzumab nor rATG induced the same combination of functional effects. The results presented in this study should be used for further in vitro and in vivo investigations that guide the clinical use of immune modulatory biologics.


1997 ◽  
Vol 27 (9) ◽  
pp. 2383-2390 ◽  
Author(s):  
Joyce L. Young ◽  
Judith M. Ramage ◽  
J. S. Hill Gaston ◽  
Peter C. L. Beverley

2020 ◽  
Vol 4 (8) ◽  
pp. 475-484
Author(s):  
Ana Lustig ◽  
Ty’Keemi Manor ◽  
Guixin Shi ◽  
Jiangyuan Li ◽  
Ying-Ting Wang ◽  
...  

2019 ◽  
Vol 15 (11) ◽  
pp. 2229-2239 ◽  
Author(s):  
Zhuoran Tang ◽  
Fengzhen Mo ◽  
Aiqun Liu ◽  
Siliang Duan ◽  
Xiaomei Yang ◽  
...  

Adoptive cell-based immunotherapy typically utilizes cytotoxic T lymphocytes (CTLs), expanding these cells ex vivo. Such expansion is traditionally accomplished through the use of autologous APCs that are capable of interactions with T cells. However, incidental inhibitory program such as CTLA-4 pathway can impair T cell proliferation. We therefore designed a nanobody which is specific for CTLA-4 (CTLA-4 Nb 16), and we then used this molecule to assess its ability to disrupt CTLA-4 signaling and thereby overcome negative costimulation of T cells. With CTLA-4 Nb16 stimulation, dendritic cell/hepatocellular carcinoma fusion cells (DC/HepG2-FCs) enhanced autologous CD8+ T cell proliferation and production of IFN-γ in vitro, thereby leading to enhanced killing of tumor cells. Using this approach in the context of adoptive CD8+ immunotherapy led to a marked suppression of tumor growth in murine NOD/SCID hepatocarcinoma or breast cancer xenograft models. We also observed significantly increased tumor cell apoptosis, and corresponding increases in murine survival. These findings thus demonstrate that in response to nanobody stimulation, DC/tumor cells-FC-induced specific CTLs exhibit superior anti-tumor efficacy, making this a potentially valuable means of achieving better adoptive immunotherapy outcomes in cancer patients.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 300 ◽  
Author(s):  
Konstantina Antoniou ◽  
Fanny Ender ◽  
Tillman Vollbrandt ◽  
Yves Laumonnier ◽  
Franziska Rathmann ◽  
...  

Activation of the C5/C5a/C5a receptor 1 (C5aR1) axis during allergen sensitization protects from maladaptive T cell activation. To explore the underlying regulatory mechanisms, we analyzed the impact of C5aR1 activation on pulmonary CD11b+ conventional dendritic cells (cDCs) in the context of house-dust-mite (HDM) exposure. BALB/c mice were intratracheally immunized with an HDM/ovalbumin (OVA) mixture. After 24 h, we detected two CD11b+ cDC populations that could be distinguished on the basis of C5aR1 expression. C5aR1− but not C5aR1+ cDCs strongly induced T cell proliferation of OVA-reactive transgenic CD4+ T cells after re-exposure to antigen in vitro. C5aR1− cDCs expressed higher levels of MHC-II and CD40 than their C5aR1+ counterparts, which correlated directly with a higher frequency of interactions with cognate CD4+ T cells. Priming of OVA-specific T cells by C5aR1+ cDCs could be markedly increased by in vitro blockade of C5aR1 and this was associated with increased CD40 expression. Simultaneous blockade of C5aR1 and CD40L on C5aR1+ cDCs decreased T cell proliferation. Finally, pulsing with OVA-induced C5 production and its cleavage into C5a by both populations of CD11b+ cDCs. Thus, we propose a model in which allergen-induced autocrine C5a generation and subsequent C5aR1 activation in pulmonary CD11b+ cDCs promotes tolerance towards aeroallergens through downregulation of CD40.


Sign in / Sign up

Export Citation Format

Share Document