scholarly journals Immunoglobulin Y for Potential Diagnostic and Therapeutic Applications in Infectious Diseases

2021 ◽  
Vol 12 ◽  
Author(s):  
Lucia Lee ◽  
Kate Samardzic ◽  
Michael Wallach ◽  
Lyn R. Frumkin ◽  
Daria Mochly-Rosen

Antiviral, antibacterial, and antiparasitic drugs and vaccines are essential to maintaining the health of humans and animals. Yet, their production can be slow and expensive, and efficacy lost once pathogens mount resistance. Chicken immunoglobulin Y (IgY) is a highly conserved homolog of human immunoglobulin G (IgG) that has shown benefits and a favorable safety profile, primarily in animal models of human infectious diseases. IgY is fast-acting, easy to produce, and low cost. IgY antibodies can readily be generated in large quantities with minimal environmental harm or infrastructure investment by using egg-laying hens. We summarize a variety of IgY uses, focusing on their potential for the detection, prevention, and treatment of human and animal infections.

Author(s):  
Furong Qin ◽  
Fan Xia ◽  
Hongli Chen ◽  
Bomiao Cui ◽  
Yun Feng ◽  
...  

Faced with the challenges posed by infectious diseases and cancer, nucleic acid vaccines present excellent prospects in clinical applications. Compared with traditional vaccines, nucleic acid vaccines have the characteristics of high efficiency and low cost. Therefore, nucleic acid vaccines have potential advantages in disease prevention and treatment. However, the low immunogenicity and instability of nucleic acid vaccines have limited their development. Therefore, a large number of studies have been conducted to improve their immunogenicity and stability by improving delivery methods, thereby supporting progress and development for clinical applications. This article mainly reviews the advantages, disadvantages, mechanisms, delivery methods, and clinical applications of nucleic acid vaccines.


Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1072
Author(s):  
Raquel Cid ◽  
Jorge Bolívar

To date, vaccination has become one of the most effective strategies to control and reduce infectious diseases, preventing millions of deaths worldwide. The earliest vaccines were developed as live-attenuated or inactivated pathogens, and, although they still represent the most extended human vaccine types, they also face some issues, such as the potential to revert to a pathogenic form of live-attenuated formulations or the weaker immune response associated with inactivated vaccines. Advances in genetic engineering have enabled improvements in vaccine design and strategies, such as recombinant subunit vaccines, have emerged, expanding the number of diseases that can be prevented. Moreover, antigen display systems such as VLPs or those designed by nanotechnology have improved the efficacy of subunit vaccines. Platforms for the production of recombinant vaccines have also evolved from the first hosts, Escherichia coli and Saccharomyces cerevisiae, to insect or mammalian cells. Traditional bacterial and yeast systems have been improved by engineering and new systems based on plants or insect larvae have emerged as alternative, low-cost platforms. Vaccine development is still time-consuming and costly, and alternative systems that can offer cost-effective and faster processes are demanding to address infectious diseases that still do not have a treatment and to face possible future pandemics.


2011 ◽  
Vol 14 (3) ◽  
pp. 400 ◽  
Author(s):  
Ravindra B Malabadi ◽  
Advaita Ganguly ◽  
Jaime A Teixeira da Silva ◽  
Archana Parashar ◽  
Mavanur R Suresh ◽  
...  

ABSTRACT - This review highlights the advantages and current status of plant-derived vaccine development with special reference to the dengue virus. There are numerous problems involved in dengue vaccine development, and there is no vaccine against all four dengue serotypes. Dengue vaccine development using traditional approaches has not been satisfactory in terms of inducing neutralizing antibodies. Recently, these issues were addressed by showing a very good response to inducing neutralizing antibodies by plant-derived dengue vaccine antigens. This indicates the feasibility of using plant-derived vaccine antigens as a low-cost method to combat dengue and other infectious diseases. The application of new methods and strategies such as dendritic cell targeting in cancer therapy, severe acute respiratory syndrome, tuberculosis, human immune deficiency virus, and malaria might play an important role. These new methods are more efficient than traditional protocols. It is expected that in the near future, plant-derived vaccine antigens or antibodies will play an important role in the control of human infectious diseases. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.


2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Antonio Carlos Valdiero ◽  
Ivan Jr. Mantovani ◽  
Andrei Fiegenbaum ◽  
Giovani P. B. Dambroz ◽  
Luiz A. Rasia

The present work addresses the development of a pneumatically driven manufacturing cell for low cost automation applications. This cell can be used in innovative applications as a low cost alternative to increase production and quality in industry. The state of the art shows that technological advances in computing have made possible a drop in equipment prices, making them more accessible. The aim of this work is to develop automation through a classic methodology for a manufacturing cell to minimize errors and facilitate the sequential logic conception. This experimental prototype has been developed at the UNIJUI with financial support by public organizations and companies. Pneumatic actuator used in bench driven has the following advantages: its maintenance is easy and simple, is of relatively low cost, self-cooling properties, and good power density (power/dimension rate), and is fast acting with high acceleration and installation flexibility. However, there are difficulties of control logic due to the complex systems. The sequential controller strategy design considers the pneumatic system, experimental results, and performance of the proposed control strategy.


Author(s):  
Tina Q. Tan ◽  
John P. Flaherty ◽  
Melvin V. Gerbie

The natural history, signs and symptoms, prevention, and treatment of common vaccine preventable infectious diseases are introduced. Dosing, immunization schedules, contraindications, precautions, and administration of vaccines are discussed for patients of all ages. Frequently asked question sections at the end of each chapter summarize issues that clinicians commonly encounter in their practices. This chapter details each of the diseases and specific vaccines that are recommended throughout life. The clinical presentations, clinical courses, complications, and post-exposure and pre-exposure managements are detailed. Differences in the disease in childhood and adult ages are noted. International variations of the diseases and vaccine requirements of individual countries are noted. The transmissions, incubation periods of the diseases, natural, and vaccine-induced durations of immunity are discussed. FAQs offer helpful answers to many of the questions that this wide variety of conditions present.


Sign in / Sign up

Export Citation Format

Share Document