scholarly journals Development of a Pneumatically Driven Cell for Low Cost Automation

2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Antonio Carlos Valdiero ◽  
Ivan Jr. Mantovani ◽  
Andrei Fiegenbaum ◽  
Giovani P. B. Dambroz ◽  
Luiz A. Rasia

The present work addresses the development of a pneumatically driven manufacturing cell for low cost automation applications. This cell can be used in innovative applications as a low cost alternative to increase production and quality in industry. The state of the art shows that technological advances in computing have made possible a drop in equipment prices, making them more accessible. The aim of this work is to develop automation through a classic methodology for a manufacturing cell to minimize errors and facilitate the sequential logic conception. This experimental prototype has been developed at the UNIJUI with financial support by public organizations and companies. Pneumatic actuator used in bench driven has the following advantages: its maintenance is easy and simple, is of relatively low cost, self-cooling properties, and good power density (power/dimension rate), and is fast acting with high acceleration and installation flexibility. However, there are difficulties of control logic due to the complex systems. The sequential controller strategy design considers the pneumatic system, experimental results, and performance of the proposed control strategy.

2020 ◽  
Vol 38 (3-4) ◽  
pp. 1-30
Author(s):  
Rakesh Kumar ◽  
Boris Grot

The front-end bottleneck is a well-established problem in server workloads owing to their deep software stacks and large instruction footprints. Despite years of research into effective L1-I and BTB prefetching, state-of-the-art techniques force a trade-off between metadata storage cost and performance. Temporal Stream prefetchers deliver high performance but require a prohibitive amount of metadata to accommodate the temporal history. Meanwhile, BTB-directed prefetchers incur low cost by using the existing in-core branch prediction structures but fall short on performance due to BTB’s inability to capture the massive control flow working set of server applications. This work overcomes the fundamental limitation of BTB-directed prefetchers, which is capturing a large control flow working set within an affordable BTB storage budget. We re-envision the BTB organization to maximize its control flow coverage by observing that an application’s instruction footprint can be mapped as a combination of its unconditional branch working set and, for each unconditional branch, a spatial encoding of the cache blocks around the branch target. Effectively capturing a map of the application’s instruction footprint in the BTB enables highly effective BTB-directed prefetching that outperforms the state-of-the-art prefetchers by up to 10% for equivalent storage budget.


2020 ◽  
Vol 85 (4) ◽  
pp. 573-609
Author(s):  
Aruna Ranganathan ◽  
Alan Benson

Technological advances and the big-data revolution have facilitated fine-grained, high-frequency, low-cost measurement of individuals’ work. Yet we understand little about the influences of such quantification of work on workers’ behavior and performance. This article investigates how and when quantification of work affects worker productivity. We argue that quantification affects worker productivity via auto-gamification, or workers’ inadvertent transformation of work into an independent, individual-level game. We further argue that quantification is likely to raise productivity in a context of simple work, where auto-gamification is motivating because quantified metrics adequately measure the work being performed. When work is complex, by contrast, quantification reduces productivity because quantified metrics cannot adequately measure the multifaceted work being performed, causing auto-gamification to be demotivating. To substantiate our argument, we study implementation of an RFID measurement technology that quantifies individual workers’ output in real time at a garment factory in India. Qualitative evidence uncovers the auto-gamification mechanism and three conditions that enable it; a natural experiment tests the consequences of quantification of work for worker productivity. This article contributes to the study of quantification, work games, technology, and organizations, and we explore the policy implications of further quantification of work.


Author(s):  
Inzamam Mashood Nasir ◽  
Muhammad Rashid ◽  
Jamal Hussain Shah ◽  
Muhammad Sharif ◽  
Muhammad Yahiya Haider Awan ◽  
...  

Background: Breast cancer is considered as the most perilous sickness among females worldwide and the ratio of new cases is expanding yearly. Many researchers have proposed efficient algorithms to diagnose breast cancer at early stages, which have increased the efficiency and performance by utilizing the learned features of gold standard histopathological images. Objective: Most of these systems have either used traditional handcrafted features or deep features which had a lot of noise and redundancy, which ultimately decrease the performance of the system. Methods: A hybrid approach is proposed by fusing and optimizing the properties of handcrafted and deep features to classify the breast cancer images. HOG and LBP features are serially fused with pretrained models VGG19 and InceptionV3. PCR and ICR are used to evaluate the classification performance of proposed method. Results: The method concentrates on histopathological images to classify the breast cancer. The performance is compared with state-of-the-art techniques, where an overall patient-level accuracy of 97.2% and image-level accuracy of 96.7% is recorded. Conclusion: The proposed hybrid method achieves the best performance as compared to previous methods and it can be used for the intelligent healthcare systems and early breast cancer detection.


Author(s):  
José Capmany ◽  
Daniel Pérez

Programmable Integrated Photonics (PIP) is a new paradigm that aims at designing common integrated optical hardware configurations, which by suitable programming can implement a variety of functionalities that, in turn, can be exploited as basic operations in many application fields. Programmability enables by means of external control signals both chip reconfiguration for multifunction operation as well as chip stabilization against non-ideal operation due to fluctuations in environmental conditions and fabrication errors. Programming also allows activating parts of the chip, which are not essential for the implementation of a given functionality but can be of help in reducing noise levels through the diversion of undesired reflections. After some years where the Application Specific Photonic Integrated Circuit (ASPIC) paradigm has completely dominated the field of integrated optics, there is an increasing interest in PIP justified by the surge of a number of emerging applications that are and will be calling for true flexibility, reconfigurability as well as low-cost, compact and low-power consuming devices. This book aims to provide a comprehensive introduction to this emergent field covering aspects that range from the basic aspects of technologies and building photonic component blocks to the design alternatives and principles of complex programmable photonics circuits, their limiting factors, techniques for characterization and performance monitoring/control and their salient applications both in the classical as well as in the quantum information fields. The book concentrates and focuses mainly on the distinctive features of programmable photonics as compared to more traditional ASPIC approaches.


Author(s):  
Adriana Silvina Pagano ◽  
André Luiz Rosa Teixeira ◽  
Flávia Affonso Mayer

Ever-increasing technological advances and growing demands for accessibility have been evolving new audiovisual translation practices and shaped the development of the field within the discipline of translation studies. This chapter provides a brief survey of state-of-the-art audiovisual translation practices, with particular focus on the ways growing demands for accessibility have been met within models of integration and inclusion of people with disabilities. It briefly reviews initiatives toward universal design and accessibility thinking in the preproduction of audiovisual content. Finally, audiovisual translation is framed within a wider user-oriented model of accessibility intended to inform the planning and development of digital infrastructure toward inclusion and reduction of social inequalities.


2019 ◽  
Vol 13 (2) ◽  
pp. 14-31
Author(s):  
Mamdouh Alenezi ◽  
Muhammad Usama ◽  
Khaled Almustafa ◽  
Waheed Iqbal ◽  
Muhammad Ali Raza ◽  
...  

NoSQL-based databases are attractive to store and manage big data mainly due to high scalability and data modeling flexibility. However, security in NoSQL-based databases is weak which raises concerns for users. Specifically, security of data at rest is a high concern for the users deployed their NoSQL-based solutions on the cloud because unauthorized access to the servers will expose the data easily. There have been some efforts to enable encryption for data at rest for NoSQL databases. However, existing solutions do not support secure query processing, and data communication over the Internet and performance of the proposed solutions are also not good. In this article, the authors address NoSQL data at rest security concern by introducing a system which is capable to dynamically encrypt/decrypt data, support secure query processing, and seamlessly integrate with any NoSQL- based database. The proposed solution is based on a combination of chaotic encryption and Order Preserving Encryption (OPE). The experimental evaluation showed excellent results when integrated the solution with MongoDB and compared with the state-of-the-art existing work.


Sign in / Sign up

Export Citation Format

Share Document