scholarly journals Sex Differences in Immunity to Viral Infections

2021 ◽  
Vol 12 ◽  
Author(s):  
Henning Jacobsen ◽  
Sabra L. Klein

The ongoing COVID-19 pandemic has increased awareness about sex-specific differences in immunity and outcomes following SARS-CoV-2 infection. Strong evidence of a male bias in COVID-19 disease severity is hypothesized to be mediated by sex differential immune responses against SARS-CoV-2. This hypothesis is based on data from other viral infections, including influenza viruses, HIV, hepatitis viruses, and others that have demonstrated sex-specific immunity to viral infections. Although males are more susceptible to most viral infections, females possess immunological features that render them more vulnerable to distinct immune-related disease outcomes. Both sex chromosome complement and related genes as well as sex steroids play important roles in mediating the development of sex differences in immunity to viral infections.

2014 ◽  
Vol 35 (2) ◽  
pp. 221-229 ◽  
Author(s):  
Bharti Manwani ◽  
Kathryn Bentivegna ◽  
Sharon E Benashski ◽  
Venugopal Reddy Venna ◽  
Yan Xu ◽  
...  

Epidemiologic studies have shown sex differences in ischemic stroke. The four core genotype (FCG) mouse model, in which the testes determining gene, Sry, has been moved from Y chromosome to an autosome, was used to dissociate the effects of sex hormones from sex chromosome in ischemic stroke outcome. Middle cerebral artery occlusion (MCAO) in gonad intact FCG mice revealed that gonadal males (XXM and XYM) had significantly higher infarct volumes as compared with gonadal females (XXF and XYF). Serum testosterone levels were equivalent in adult XXM and XYM, as was serum estrogen in XXF and XYF mice. To remove the effects of gonadal hormones, gonadectomized FCG mice were subjected to MCAO. Gonadectomy significantly increased infarct volumes in females, while no change was seen in gonadectomized males, indicating that estrogen loss increases ischemic sensitivity. Estradiol supplementation in gonadectomized FCG mice rescued this phenotype. Interestingly, FCG male mice were less sensitive to effects of hormones. This may be due to enhanced expression of the transgene Sry in brains of FCG male mice. Sex differences in ischemic stroke sensitivity appear to be shaped by organizational and activational effects of sex hormones, rather than sex chromosomal complement.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Ajay Pradhan ◽  
Per-Erik Olsson

Abstract Coronavirus disease 2019 (COVID-19) has shown high infection and mortality rates all over the world, and despite the global efforts, there is so far no specific therapy available for COVID-19. Interestingly, while the severity and mortality of COVID-19 are higher in males than in females, the underlying molecular mechanisms are unclear. In this review, we explore sex-related differences that may be contributing factors to the observed male-biased mortality from COVID-19. Males are considered the weaker sex in aspects related to endurance and infection control. Studies show that viral RNA clearance is delayed in males with COVID-19. A recent study has indicated that the testis can harbor coronavirus, and consequently, males show delayed viral clearance. However, the role of testis involvement in COVID-19 severity and mortality needs further research. Males and females show a distinct difference in immune system responses with females eliciting stronger immune responses to pathogens. This difference in immune system responses may be a major contributing factor to viral load, disease severity, and mortality. In addition, differences in sex hormone milieus could also be a determinant of viral infections as estrogen has immunoenhancing effects while testosterone has immunosuppressive effects. The sex-specific severity of COVID-19 infections indicates that further research on understanding the sex differences is needed. Inclusion of both males and females in basic research and clinical trials is required to provide critical information on sex-related differences that may help to better understand disease outcome and therapy.


2019 ◽  
Author(s):  
Pui-Pik Law ◽  
Ping-Kei Chan ◽  
Kirsten McEwen ◽  
Huihan Zhi ◽  
Bing Liang ◽  
...  

SummarySex differences in growth rate in very early embryos have been recognized in a variety of mammals and attributed to sex-chromosome complement effects as they occur before overt sexual differentiation. We previously found that sex-chromosome complement, rather than sex hormones regulates heterochromatin-mediated silencing of a transgene and autosomal gene expression in mice. Here, sex dimorphism in proliferation was investigated. We confirm that male embryonic fibroblasts proliferate faster than female fibroblasts and show that this proliferation advantage is completely dependent upon heterochromatin protein 1 gamma (HP1γ). To determine whether this sex-regulatory effect of HP1γ was a more general phenomenon, we performed RNA sequencing on MEFs derived from males and females, with or without HP1γ. Strikingly, HP1γ was found to be crucial for regulating nearly all sexually dimorphic autosomal gene expression because deletion of the HP1γ gene in males abolished sex differences in autosomal gene expression. The identification of a key epigenetic modifier as central in defining gene expression differences between males and females has important implications for understanding physiological sex differences and sex bias in disease.


2021 ◽  
Author(s):  
Sarah R Ocanas ◽  
Victor A Ansere ◽  
Kyla B Tooley ◽  
Niran Hadad ◽  
Ana J Chucair-Elliott ◽  
...  

Sex differences in the brain as they relate to health and disease are often overlooked in experimental models. Many neurological disorders, like Alzheimer's disease (AD), multiple sclerosis (MS), and autism, differ in prevalence between males and females. Sex differences originate either from differential gene expression on sex chromosomes or from hormonal differences, either directly or indirectly. To disentangle the relative contributions of genetic sex (XX v. XY) and gonadal sex (ovaries v. testes) to the regulation of hippocampal sex effects, we use the "sex-reversal" Four Core Genotype (FCG) mouse model which uncouples sex chromosome complement from gonadal sex. Transcriptomic and epigenomic analyses of hippocampal RNA and DNA from ~12 month old FCG mice, reveals differential regulatory effects of sex chromosome content and gonadal sex on X- versus autosome-encoded gene expression and DNA modification patterns. Gene expression and DNA methylation patterns on the X chromosome were driven primarily by sex chromosome content, not gonadal sex. The majority of DNA methylation changes involved hypermethylation in the XX genotypes (as compared to XY) in the CpG context, with the largest differences in CpG islands, promoters, and CTCF binding sites. Autosomal gene expression and DNA modifications demonstrated regulation by sex chromosome complement and gonadal sex. These data demonstrate the importance of sex chromosomes themselves, independent of hormonal status, in regulating hippocampal sex effects. Future studies will need to further interrogate specific CNS cell types, identify the mechanisms by which sex chromosome regulate autosomes, and differentiate organizational from activational hormonal effects.


2019 ◽  
Author(s):  
Kimberly C. Olney ◽  
Sarah M. Brotman ◽  
Jocelyn P. Andrews ◽  
Valeria A. Valverde-Vesling ◽  
Melissa A. Wilson

AbstractBackgroundHuman X and Y chromosomes share an evolutionary origin and, as a consequence, sequence similarity. We investigated whether sequence homology between the X and Y chromosomes affects alignment of RNA-Seq reads and estimates of differential expression. We tested the effects of using reference genomes and reference transcriptomes informed by the sex chromosome complement of the sample’s genome on measurements of RNA-Seq abundance and sex differences in expression.ResultsThe default genome includes the entire human reference genome (GRCh38), including the entire sequence of the X and Y chromosomes. We created two sex chromosome complement informed reference genomes. One sex chromosome complement informed reference genome was used for samples that lacked a Y chromosome; for this reference genome version, we hard-masked the entire Y chromosome. For the other sex chromosome complement informed reference genome, to be used for samples with a Y chromosome, we hard-masked only the pseudoautosomal regions of the Y chromosome, because these regions are duplicated identically in the reference genome on the X chromosome. We analyzed transcript abundance in the whole blood, brain cortex, breast, liver, and thyroid tissues from 20 genetic female (46, XX) and 20 genetic male (46, XY) samples. Each sample was aligned twice; once to the default reference genome and then independently aligned to a reference genome informed by the sex chromosome complement of the sample, repeated using two different read aligners, HISAT and STAR. We then quantified sex differences in gene expression using featureCounts to get the raw count estimates followed by Limma/Voom for normalization and differential expression. We additionally created sex chromosome complement informed transcriptome references for use in pseudo-alignment using Salmon. Transcript abundance was quantified twice for each sample; once to the default target transcripts and then independently to target transcripts informed by the sex chromosome complement of the sample.ConclusionsWe show that regardless of the choice of read aligner, using an alignment protocol informed by the sex chromosome complement of the sample results in higher expression estimates on the pseudoautosomal regions of the X chromosome in both genetic male and genetic female samples, as well as an increased number of unique genes being called as differentially expressed between the sexes. We additionally show that using a pseudo-alignment approach informed on the sex chromosome complement of the sample eliminates Y-linked expression in female XX samples.Author summaryThe human X and Y chromosomes share an evolutionary origin and sequence homology, including regions of 100% identity; this sequence homology can result in reads misaligning between the sex chromosomes, X and Y. We hypothesized that misalignment of reads on the sex chromosomes would confound estimates of transcript abundance if the sex chromosome complement of the sample is not accounted for during the alignment step. For example, because of shared sequence similarity, X-linked reads could misalign to the Y chromosome. This is expected to result in reduced expression for regions between X and Y that share high levels of homology. For this reason, we tested the effect of using a default reference genome versus a reference genome informed by the sex chromosome complement of the sample on estimates of transcript abundance in human RNA-Seq samples from whole blood, brain cortex, breast, liver, and thyroid tissues of 20 genetic female (46, XX) and 20 genetic male (46, XY) samples. We found that using a reference genome with the sex chromosome complement of the sample resulted in higher measurements of X-linked gene transcription for both male and female samples and more differentially expressed genes on the X and Y chromosomes. We additionally investigated the use of a sex chromosome complement informed transcriptome reference index for alignment free quantification protocols. We observed no Y-linked expression in female XX samples only when the transcript quantification was performed using a transcriptome reference index informed on the sex chromosome complement of the sample. We recommend that future studies requiring aligning RNA-Seq reads to a reference genome or pseudo-alignment with a transcriptome reference should consider the sex chromosome complement of their samples prior to running default pipelines.


2020 ◽  
Author(s):  
India Nichols ◽  
Scott Vincent ◽  
September Hesse ◽  
J. Christopher Ehlen ◽  
Allison Brager ◽  
...  

AbstractPoor sleep is a hazard of daily life that oftentimes cannot be avoided. Gender differences in daily sleep and wake patterns are widely reported; however, it remains unclear how biological sex, which is comprised of genetic and endocrine components, directly influences sleep regulatory processes. In the majority of model systems studied thus far, sex differences in daily sleep amount are predominant during the active (wake) phase of the sleep-wake cycle. The pervasiveness of sex differences in sleep amount throughout phylogeny suggests a strong underlying genetic component. The goal of the current study is to determine if sex differences in active-phase sleep amount are dependent on sex chromosomes in mice.Sleep was examined in the four-core genotype (FCG) mouse model, whose sex chromosome complement (XY, XX) is independent of sex phenotype (male or female). In this line, sex phenotype is determined by the presence or absence of the Sry gene, which is dissociated from the Y chromosome. Polysomnographic sleep recordings were obtained from gonadectomized (GDX) FCG mice to examine spontaneous sleep states and the ability to recover from sleep loss. We report that during the active-phase, the presence of the Sry gene accounts for most sex differences during spontaneous sleep; however, during recovery from sleep loss, sex differences in sleep amount are partially driven by sex chromosome complement. These results suggest that genetic factors on the sex chromosomes encode the homeostatic response to sleep loss.


Endocrinology ◽  
2020 ◽  
Vol 161 (9) ◽  
Author(s):  
Samuel J Harp ◽  
Mariangela Martini ◽  
Wendy J Lynch ◽  
Emilie F Rissman

Abstract The organizational/activational hypothesis suggests that gonadal steroid hormones like testosterone (T) and estradiol (E2) are important at 2 different times during the lifespan when they perform 2 different functions. First steroids “organize” brain structures early in life and during puberty, and in adults these same hormones “activate” sexually dimorphic behaviors. This hypothesis has been tested and proven valid for a large number of behaviors (learning, memory, social, and sexual behaviors). Sex differences in drug addiction are well established both for humans and animal models. Previous research in this field has focused primarily on cocaine self-administration by rats. Traditionally, observed sex differences have been explained by the sex-specific concentrations of gonadal hormones present at the time of the drug-related behavior. Studies with gonadectomized rodents establishes an activational role for E2 that facilitates vulnerability in females, and when E2 is combined with progesterone, addiction is attenuated. Literature on organizational actions of steroids is sparse but predicts that T, after it is aromatized to E2, changes aspects of the neural reward system. Here we summarize these data and propose that sex chromosome complement also plays a role in determining sex-specific drug-taking behavior. Future research is needed to disentangle the effects of hormones and sex chromosome complement, and we propose the four core genotype mouse model as an effective tool for answering these questions.


Nature ◽  
2020 ◽  
Vol 588 (7837) ◽  
pp. 315-320 ◽  
Author(s):  
Takehiro Takahashi ◽  
◽  
Mallory K. Ellingson ◽  
Patrick Wong ◽  
Benjamin Israelow ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document