scholarly journals Bacterial Outer Membrane Vesicles as Antibiotic Delivery Vehicles

2021 ◽  
Vol 12 ◽  
Author(s):  
Shannon M. Collins ◽  
Angela C. Brown

Bacterial outer membrane vesicles (OMVs) are nanometer-scale, spherical vehicles released by Gram-negative bacteria into their surroundings throughout growth. These OMVs have been demonstrated to play key roles in pathogenesis by delivering certain biomolecules to host cells, including toxins and other virulence factors. In addition, this biomolecular delivery function enables OMVs to facilitate intra-bacterial communication processes, such as quorum sensing and horizontal gene transfer. The unique ability of OMVs to deliver large biomolecules across the complex Gram-negative cell envelope has inspired the use of OMVs as antibiotic delivery vehicles to overcome transport limitations. In this review, we describe the advantages, applications, and biotechnological challenges of using OMVs as antibiotic delivery vehicles, studying both natural and engineered antibiotic applications of OMVs. We argue that OMVs hold great promise as antibiotic delivery vehicles, an urgently needed application to combat the growing threat of antibiotic resistance.

2006 ◽  
Vol 188 (15) ◽  
pp. 5385-5392 ◽  
Author(s):  
Amanda J. McBroom ◽  
Alexandra P. Johnson ◽  
Sreekanth Vemulapalli ◽  
Meta J. Kuehn

ABSTRACT It has been long noted that gram-negative bacteria produce outer membrane vesicles, and recent data demonstrate that vesicles released by pathogenic strains can transmit virulence factors to host cells. However, the mechanism of vesicle release has remained undetermined. This genetic study addresses whether these structures are merely a result of membrane instability or are formed by a more directed process. To elucidate the regulatory mechanisms and physiological basis of vesiculation, we conducted a screen in Escherichia coli to identify gene disruptions that caused vesicle over- or underproduction. Only a few low-vesiculation mutants and no null mutants were recovered, suggesting that vesiculation may be a fundamental characteristic of gram-negative bacterial growth. Gene disruptions were identified that caused differences in vesicle production ranging from a 5-fold decrease to a 200-fold increase relative to wild-type levels. These disruptions included loci governing outer membrane components and peptidoglycan synthesis as well as the σE cell envelope stress response. Mutations causing vesicle overproduction did not result in upregulation of the ompC gene encoding a major outer membrane protein. Detergent sensitivity, leakiness, and growth characteristics of the novel vesiculation mutant strains did not correlate with vesiculation levels, demonstrating that vesicle production is not predictive of envelope instability.


Toxins ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 414 ◽  
Author(s):  
Justin Nice ◽  
Nataliya Balashova ◽  
Scott Kachlany ◽  
Evan Koufos ◽  
Eric Krueger ◽  
...  

The Gram-negative bacterium, Aggregatibacter actinomycetemcomitans, has been associated with localized aggressive periodontitis (LAP). In particular, highly leukotoxic strains of A. actinomycetemcomitans have been more closely associated with this disease, suggesting that LtxA is a key virulence factor for A. actinomycetemcomitans. LtxA is secreted across both the inner and outer membranes via the Type I secretion system, but has also been found to be enriched within outer membrane vesicles (OMVs), derived from the bacterial outer membrane. We have characterized the association of LtxA with OMVs produced by the highly leukotoxic strain, JP2, and investigated the interaction of these OMVs with host cells to understand how LtxA is delivered to host cells in this OMV-associated form. Our results demonstrated that a significant fraction of the secreted LtxA exists in an OMV-associated form. Furthermore, we have discovered that in this OMV-associated form, the toxin is trafficked to host cells by a cholesterol- and receptor-independent mechanism in contrast to the mechanism by which free LtxA is delivered. Because OMV-associated toxin is trafficked to host cells in an entirely different manner than free toxin, this study highlights the importance of studying both free and OMV-associated forms of LtxA to understand A. actinomycetemcomitans virulence.


2017 ◽  
Vol 13 (11) ◽  
pp. e1006760 ◽  
Author(s):  
Eloise J. O’Donoghue ◽  
Natalie Sirisaengtaksin ◽  
Douglas F. Browning ◽  
Ewa Bielska ◽  
Mohammed Hadis ◽  
...  

2016 ◽  
Author(s):  
Eloise J O’Donoghue ◽  
Douglas F. Browning ◽  
Ewa Bielska ◽  
Luke Alderwick ◽  
Sara Jabbari ◽  
...  

SUMMARYOuter membrane vesicles are microvesicles shed by Gram-negative bacteria and play important roles in immune priming and disease pathogenesis. However, our current mechanistic understanding of vesicle - host cell interactions is limited by a lack of methods to study the kinetics of vesicle entry and cargo delivery to host cells in real-time. Here, we describe a highly sensitive method to study the kinetics of vesicle entry into host cells in real-time using a genetically encoded probe targeted to vesicles. We found that route of vesicular uptake, and thus entry kinetics and efficiency of cargo release, are determined by the chemical composition of the bacterial lipopolysaccharide. The presence of O-antigen facilitates receptor-independent entry, which enhances both rate and efficiency of cargo uptake by host cells. Collectively, our findings highlight the chemical composition of the bacterial cell wall as a major determinant of secretion-independent delivery of virulence factors during Gram-negative infections.


2019 ◽  
Vol 5 (4) ◽  
pp. 184-198 ◽  
Author(s):  
Guangchao Qing ◽  
Ningqiang Gong ◽  
Xiaohui Chen ◽  
Jing Chen ◽  
Hong Zhang ◽  
...  

Abstract Bacterial outer membrane vesicle (OMV) is a kind of spherical lipid bilayer nanostructure naturally secreted by bacteria, which has diverse functions such as intracellular and extracellular communication, horizontal gene transfer, transfer of contents to host cells, and eliciting an immune response in host cells. In this review, several methods including ultracentrifugation and precipitation for isolating OMVs were summarized. The latest progresses of OMVs in biomedical fields, especially in vaccine development, cancer treatment, infection control, and bioimaging and detection were also summarized in this review. We highlighted the importance of genetic engineering for the safe and effective application and in facilitating the rapid development of OMVs. Finally, we discussed the bottleneck problems about OMVs in preparation and application at present and put forward our own suggestions about them. Some perspectives of OMVs in biomedical field were also provided.


Microbiology ◽  
2014 ◽  
Vol 160 (10) ◽  
pp. 2109-2121 ◽  
Author(s):  
Heramb M. Kulkarni ◽  
Medicharla V. Jagannadham

Outer membrane vesicles (OMVs) released from Gram-negative bacteria consist of lipids, proteins, lipopolysaccharides and other molecules. OMVs are associated with several biological functions such as horizontal gene transfer, intracellular and intercellular communication, transfer of contents to host cells, and eliciting an immune response in host cells. Although hypotheses have been made concerning the mechanism of biogenesis of these vesicles, research on OMV formation is far from complete. The roles of outer membrane components, bacterial quorum sensing molecules and some specific proteins in OMV biogenesis have been studied. This review discusses the different models that have been proposed for OMV biogenesis, along with details of the biological functions of OMVs and the likely scope of future research.


2021 ◽  
Vol 17 (5) ◽  
pp. e1009546
Author(s):  
Marisela M. Davis ◽  
Aaron M. Brock ◽  
Tanner G. DeHart ◽  
Brittany P. Boribong ◽  
Katherine Lee ◽  
...  

The bacterial pathogen responsible for causing Lyme disease, Borrelia burgdorferi, is an atypical Gram-negative spirochete that is transmitted to humans via the bite of an infected Ixodes tick. In diderms, peptidoglycan (PG) is sandwiched between the inner and outer membrane of the cell envelope. In many other Gram-negative bacteria, PG is bound by protein(s), which provide both structural integrity and continuity between envelope layers. Here, we present evidence of a peptidoglycan-associated protein (PAP) in B. burgdorferi. Using an unbiased proteomics approach, we identified Neutrophil Attracting Protein A (NapA) as a PAP. Interestingly, NapA is a Dps homologue, which typically functions to bind and protect cellular DNA from damage during times of stress. While B. burgdorferi NapA is known to be involved in the oxidative stress response, it lacks the critical residues necessary for DNA binding. Biochemical and cellular studies demonstrate that NapA is localized to the B. burgdorferi periplasm and is indeed a PAP. Cryo-electron microscopy indicates that mutant bacteria, unable to produce NapA, have structural abnormalities. Defects in cell-wall integrity impact growth rate and cause the napA mutant to be more susceptible to osmotic and PG-specific stresses. NapA-linked PG is secreted in outer membrane vesicles and augments IL-17 production, relative to PG alone. Using microfluidics, we demonstrate that NapA acts as a molecular beacon—exacerbating the pathogenic properties of B. burgdorferi PG. These studies further our understanding of the B. burgdorferi cell envelope, provide critical information that underlies its pathogenesis, and highlight how a highly conserved bacterial protein can evolve mechanistically, while maintaining biological function.


Sign in / Sign up

Export Citation Format

Share Document