scholarly journals Extracellular ATP Limits Homeostatic T Cell Migration Within Lymph Nodes

2021 ◽  
Vol 12 ◽  
Author(s):  
Daichi Kobayashi ◽  
Yuki Sugiura ◽  
Eiji Umemoto ◽  
Akira Takeda ◽  
Hisashi Ueta ◽  
...  

Whereas adenosine 5’-triphosphate (ATP) is the major energy source in cells, extracellular ATP (eATP) released from activated/damaged cells is widely thought to represent a potent damage-associated molecular pattern that promotes inflammatory responses. Here, we provide suggestive evidence that eATP is constitutively produced in the uninflamed lymph node (LN) paracortex by naïve T cells responding to C-C chemokine receptor type 7 (CCR7) ligand chemokines. Consistently, eATP was markedly reduced in naïve T cell-depleted LNs, including those of nude mice, CCR7-deficient mice, and mice subjected to the interruption of the afferent lymphatics in local LNs. Stimulation with a CCR7 ligand chemokine, CCL19, induced ATP release from LN cells, which inhibited CCR7-dependent lymphocyte migration in vitro by a mechanism dependent on the purinoreceptor P2X7 (P2X7R), and P2X7R inhibition enhanced T cell retention in LNs in vivo. These results collectively indicate that paracortical eATP is produced by naïve T cells in response to constitutively expressed chemokines, and that eATP negatively regulates CCR7-mediated lymphocyte migration within LNs via a specific subtype of ATP receptor, demonstrating its fine-tuning role in homeostatic cell migration within LNs.

1992 ◽  
Vol 176 (5) ◽  
pp. 1431-1437 ◽  
Author(s):  
M Croft ◽  
D D Duncan ◽  
S L Swain

Because of the low frequency of T cells for any particular soluble protein antigen in unprimed animals, the requirements for naive T cell responses in specific antigens have not been clearly delineated and they have been difficult to study in vitro. We have taken advantage of mice transgenic for the V beta 3/V alpha 11 T cell receptor (TCR), which can recognize a peptide of cytochrome c presented by IEk. 85-90% of CD4+ T cells in these mice express the transgenic TCR, and we show that almost all such V beta 3/V alpha 11 receptor-positive cells have a phenotype characteristic of naive T cells, including expression of high levels of CD45RB, high levels of L-selectin (Mel-14), low levels of CD44 (Pgp-1), and secretion of interleukin 2 (IL-2) as the major cytokine. Naive T cells, separated on the basis of CD45RB high expression, gave vigorous responses (proliferation and IL-2 secretion) to peptide antigen presented in vitro by a mixed antigen-presenting cell population. At least 50% of the T cell population appeared to respond, as assessed by blast transformation, entry into G1, and expression of increased levels of CD44 by 24 h. Significant contributions to the response by contaminating memory CD4+ cells were ruled out by demonstrating that the majority of the CD45RB low, L-selectin low, CD44 high cells did not express the V beta 3/V alpha 11 TCR and responded poorly to antigen. We find that proliferation and IL-2 secretion of the naive CD4 cells is minimal when resting B cells present peptide antigen, and that both splenic and bone marrow-derived macrophages are weak stimulators. Naive T cells did respond well to high numbers of activated B cells. However, dendritic cells were the most potent stimulators of proliferation and IL-2 secretion at low cell numbers, and were far superior inducers of IL-2 at higher numbers. These studies establish that naive CD4 T cells can respond vigorously to soluble antigen and indicate that maximal stimulation can be achieved by presentation of antigen on dendritic cells. This model should prove very useful in further investigations of activation requirements and functional characteristics of naive helper T cells.


1997 ◽  
Vol 27 (9) ◽  
pp. 2383-2390 ◽  
Author(s):  
Joyce L. Young ◽  
Judith M. Ramage ◽  
J. S. Hill Gaston ◽  
Peter C. L. Beverley

2020 ◽  
Vol 4 (8) ◽  
pp. 475-484
Author(s):  
Ana Lustig ◽  
Ty’Keemi Manor ◽  
Guixin Shi ◽  
Jiangyuan Li ◽  
Ying-Ting Wang ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Danielle Minns ◽  
Katie J. Smith ◽  
Gareth Hardisty ◽  
Adriano G. Rossi ◽  
Emily Gwyer Findlay

Neutrophils and T cells exist in close proximity in lymph nodes and inflamed tissues during health and disease. They are able to form stable interactions, with profound effects on the phenotype and function of the T cells. However, the outcome of these effects are frequently contradictory; in some systems neutrophils suppress T cell proliferation, in others they are activatory or present antigen directly. Published protocols modelling these interactions in vitro do not reflect the full range of interactions found in vivo; they do not examine how activated and naïve T cells differentially respond to neutrophils, or whether de-granulating or resting neutrophils induce different outcomes. Here, we established a culture protocol to ask these questions with human T cells and autologous neutrophils. We find that resting neutrophils suppress T cell proliferation, activation and cytokine production but that de-granulating neutrophils do not, and neutrophil-released intracellular contents enhance proliferation. Strikingly, we also demonstrate that T cells early in the activation process are susceptible to suppression by neutrophils, while later-stage T cells are not, and naïve T cells do not respond at all. Our protocol therefore allows nuanced analysis of the outcome of interaction of these cells and may explain the contradictory results observed previously.


2019 ◽  
Vol 4 (41) ◽  
pp. eaav5947 ◽  
Author(s):  
Melissa S. F. Ng ◽  
Theodore L. Roth ◽  
Ventura F. Mendoza ◽  
Alexander Marson ◽  
Trevor D. Burt

T cell receptor (TCR) stimulation and cytokine cues drive the differentiation of CD4+ naïve T cells into effector T cell populations with distinct proinflammatory or regulatory functions. Unlike adult naïve T cells, human fetal naïve CD4+ T cells preferentially differentiate into FOXP3+ regulatory T (Treg) cells upon TCR activation independent of exogenous cytokine signaling. This cell-intrinsic predisposition for Treg differentiation is implicated in the generation of tolerance in utero; however, the underlying mechanisms remain largely unknown. Here, we identify epigenetic and transcriptional programs shared between fetal naïve T and committed Treg cells that are inactive in adult naïve T cells and show that fetal-derived induced Treg (iTreg) cells retain this transcriptional program. We show that a subset of Treg-specific enhancers is accessible in fetal naïve T cells, including two active superenhancers at Helios. Helios is expressed in fetal naïve T cells but not in adult naïve T cells, and fetal iTreg cells maintain Helios expression. CRISPR-Cas9 ablation of Helios in fetal naïve T cells impaired their differentiation into iTreg cells upon TCR stimulation, reduced expression of immunosuppressive genes in fetal iTreg cells such as IL10, and increased expression of proinflammatory genes including IFNG. Consequently, Helios knockout fetal iTreg cells had reduced IL-10 and increased IFN-γ cytokine production. Together, our results reveal important roles for Helios in enhancing preferential fetal Treg differentiation and fine-tuning eventual Treg function. The Treg-biased programs identified within fetal naïve T cells could potentially be used to engineer enhanced iTreg populations for adoptive cellular therapies.


1996 ◽  
Vol 184 (2) ◽  
pp. 397-406 ◽  
Author(s):  
J A Lederer ◽  
V L Perez ◽  
L DesRoches ◽  
S M Kim ◽  
A K Abbas ◽  
...  

The molecular basis for changes in cytokine expression during T helper (Th) cell subset differentiation is not well understood. We have characterized transcriptional events related to cytokine gene expression in populations of naive T cell receptor-transgenic T cells as they are driven in vitro toward Th1 or Th2 phenotypes by interleukin (IL)-12 or IL-4 treatment, respectively. Quantitative reverse transcriptase-polymerase chain reaction analysis of cytokine transcripts indicates that interferon (IFN) gamma, IL-4, and IL-2 mRNA are expressed with distinct kinetics after naive T cells are stimulated with antigen and either IL-4 or IL-12. IFN-gamma mRNA appears as early as 6 h in IL-12-treated cultures, IL-4 appears only after 48 h in IL-4-treated cultures, and IL-2 is equivalently expressed in both types of cultures. Analyses were performed to determine if there were any differences in activation of IL-2 or IL-4 transcription factors that accompanied Th1 versus Th2 differentiation. These studies demonstrated that signal transducer and activator of transcription 6 (STAT6) binds to a sequence in the IL-4 promoter and that this STAT6-binding site can support IL-4-dependent transcription of a linked heterologous promoter. Prolonged activation of STAT6 is characteristic of populations undergoing Th2 differentiation. Furthermore, STAT6 is activated in an autocrine manner when differentiated Th2 populations are stimulated by antigen receptor ligation. Th1 populations derived from IL-12 plus antigen treatment of naive T cells remain responsive to IL-4 as indicated by induction of STAT6 and IL-4 mRNA. These data indicate that Th1 and Th2 differentiation represents the combination of different, apparently independently regulated transcriptional events. Furthermore, among transcription factors that bind to the IL-4 or IL-2 promoters, STAT6 is the one whose activation distinguishes Th2 versus Th1 development.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3002-3002
Author(s):  
Patrick J Hanley ◽  
J. Joseph Melenhorst ◽  
Phillip Scheinberg ◽  
Gail J Demmler-Harrison ◽  
Daniele Lilleri ◽  
...  

Abstract Abstract 3002 Adoptive transfer of CMV-specific T cells derived from adult CMV-seropositive (CMVpos) donors can effectively restore antiviral immunity after stem cell transplantation. However due to the absence of CMV antigen-specific memory T cells in cord blood (CB) and adult CMV-seronegative (CMVneg) donors, different culture systems are required to generate virus-specific T cells for adoptive transfer. With a novel protocol we have generated CMVpp65-specific T cells from CB and found that 15/15 CB T cell lines recognized atypical epitopes of pp65. We then explored the generation of CMV-specific CTL from CMVneg donors using a GMP-compliant methodology and studied the epitopes recognized. CD45RA+ naive T cells were selected from the peripheral blood of CMVneg donors and stimulated with pp65-Pepmix-pulsed dendritic cells with supplemented with IL-7, IL-12, and IL-15. For subsequent stimulations T cells were stimulated with pp65-Pepmix-pulsed EBV-LCL and IL-15 or IL-2. CMVpp65-specific T cells (CMV-CTL) expanded from 8 of 11 CMVneg donors were primarily CD8+ T cells (mean 71%). Naïve donor CMV-CTL secreted IFN- γ in response to pp65 peptides (mean 224; range: 38–611 SFC/1×105 cells) compared to irrelevant peptides (mean 12;Range 3–37) as measured in Elispot assays and lysed pp65-pulsed target cells (mean :48; range :15–70%) but not negative controls (mean 22; range 4–40%). These CMV-CTL derived from naive (but not memory) T cells recognized only novel and atypical pp65 epitopes (such as the HLA-A2-restricted epitopes LQTGIHVRV and MLNIPSINV) but not the typical HLA-A2-restricted epitope NLVPMVATV as confirmed by ELISPOT and multimer analysis. These results are similar to CB-derived CTL. Analysis of the avidity of naïve donor CTL specific for the atypical CMV epitopes revealed that the 1/2 maximum effective concentration was similar (mean: 600 pM) to CMVpos CTL recognizing typical epitopes (mean: 300 pM), and more avid than CMVpos CTL recognizing atypical epitopes (mean: 4 nM), highlighting the difference between naïve-derived and memory-derived CTL. TCR sequencing performed on T cells specific for typical (CMVpos) and atypical (CMVpos, CMVneg, and CB) epitopes revealed that CMVpos donor CMV-CTL recognizing typical epitopes were markedly more oligoclonal than CTL recognizing the atypical epitopes derived from CB, CMVpos, or CMVneg donors. To address the concern that atypical epitopes might not be naturally presented by CMV-infected cells and therefore not recognized by in vitro generated CTL, we tested whether CMV CTL (from CB, CMVpos, CMVneg) generated using CMV AD169-infected fibroblasts or CMV VR1814-infected DCs would recognize the same epitopes. As before, CMVpos CMV CTL recognized typical epitopes of pp65 while CB and CMVneg CMV CTL recognized only atypical epitopes, suggesting that the epitopes are naturally processed and presented by APCs, and that the atypical epitopes observed are not an artifact of using exogenous antigens like the pp65 Pepmix. Thus, despite their unusual repertoire, T cells derived from CB or CMVneg donors are likely to control CMV infection. These results reveal major differences in the naïve and memory CMV specific T cell repertoire that merits further exploration. Nevertheless, we demonstrated that atypical epitopes are naturally presented by CMV infected cells and we are now evaluating the clinical efficacy of these CTL in recipients of CBT. These studies should determine if naive T cells primed in vitro are able to persist and establish memory and virus protection in vivo. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 106 (1) ◽  
pp. 216-223 ◽  
Author(s):  
Elodie Segura ◽  
Carole Nicco ◽  
Bérangère Lombard ◽  
Philippe Véron ◽  
Graça Raposo ◽  
...  

Exosomes are secreted vesicles formed in late endocytic compartments. Immature dendritic cells (DCs) secrete exosomes, which transfer functional major histocompatibility complex (MHC)–peptide complexes to other DCs. Since immature and mature DCs induce different functional T-cell responses (ie, tolerance versus priming), we asked whether DC maturation also influenced the priming abilities of their exosomes. We show that exosomes secreted by lipopolysaccharide (LPS)–treated mature DCs are 50- to 100-fold more potent to induce antigen-specific T-cell activation in vitro than exosomes from immature DCs. In vitro, exosomes from mature DCs transfer to B lymphocytes the ability to prime naive T cells. In vivo, only mature exosomes trigger effector T-cell responses, leading to fast skin graft rejection. Proteomic and biochemical analyses revealed that mature exosomes are enriched in MHC class II, B7.2, intercellular adhesion molecule 1 (ICAM-1), and bear little milk-fat globule–epidermal growth factor–factor VIII (MFG-E8) as compared with immature exosomes. Functional analysis using DC-derived exosomes from knock-out mice showed that MHC class II and ICAM-1 are required for mature exosomes to prime naive T cells, whereas B7.2 and MFG-E8 are dispensable. Therefore, changes in protein composition and priming abilities of exosomes reflect the maturation signals received by DCs.


1998 ◽  
Vol 188 (12) ◽  
pp. 2289-2299 ◽  
Author(s):  
Mark Bix ◽  
Zhi-En Wang ◽  
Bonnie Thiel ◽  
Nicholas J. Schork ◽  
Richard M. Locksley

The dysregulated expression of interleukin 4 (IL-4) can have deleterious effects on the outcome of infectious and allergic diseases. Despite this, the mechanisms by which naive T cells commit to IL-4 expression during differentiation into mature effector cells remain incompletely defined. As compared to cells from most strains of mice, activated CD4+ T cells from BALB mice show a bias towards IL-4 production and T helper 2 commitment in vitro and in vivo. Here, we show that this bias arises not from an increase in the amount of IL-4 produced per cell, but rather from an increase in the proportion of CD4+ T cells that commit to IL-4 expression. This strain-specific difference in commitment was independent of signals mediated via the IL-4 receptor and hence occurred upstream of potential autoregulatory effects of IL-4. Segregation analysis of the phenotype in an experimental backcross cohort implicated a polymorphic locus on chromosome 16. Consistent with a role in differentiation, expression of the phenotype was CD4+ T cell intrinsic and was evident as early as 16 h after the activation of naive T cells. Probabilistic gene activation is proposed as a T cell–intrinsic mechanism capable of modulating the proportion of naive T cells that commit to IL-4 production.


2008 ◽  
Vol 389 (5) ◽  
Author(s):  
Dietmar Herndler-Brandstetter ◽  
Ellen Veel ◽  
Gerhard T. Laschober ◽  
Gerald Pfister ◽  
Stefan Brunner ◽  
...  

Abstract The age-related decline in immune system functions is responsible for the increased prevalence of infectious diseases and the low efficacy of vaccination in elderly individuals. In particular, the number of peripheral naive T-cells declines throughout life and they exhibit severe functional defects at advanced age. However, we have recently identified a non-regulatory CD8+CD45RO+CD25+ T-cell subset that occurs in a subgroup of healthy elderly individuals, who still exhibit an intact humoral immune response following influenza vaccination. Here, we demonstrate that CD8+CD45RO+CD25+ T-cells share phenotypic and functional characteristics with naive CD8+CD45RA+CD28+ T-cells from young individuals, despite their expression of CD45RO. CD8+CD45RO+CD25+ T-cells also have long telomeres and upon antigenic challenge, they efficiently expand in vitro and differentiate into functional effector cells. The expanded population also maintains a diverse T-cell receptor repertoire. In conclusion, CD8+CD45RO+CD25+ T-cells from elderly individuals compensate for the loss of functional naive T-cells and may therefore be used as a marker of immunological competence in old age.


Sign in / Sign up

Export Citation Format

Share Document