scholarly journals Detection of Quorum Sensing Signal Molecules, Particularly N-Acyl Homoserine Lactones, 2-Alky-4-Quinolones, and Diketopiperazines, in Gram-Negative Bacteria Isolated From Insect Vector of Leishmaniasis

2021 ◽  
Vol 2 ◽  
Author(s):  
Rafael Jose Vivero-Gomez ◽  
Gustavo Bedoya Mesa ◽  
Jorge Higuita-Castro ◽  
Sara M. Robledo ◽  
Claudia X. Moreno-Herrera ◽  
...  

Gram-negative bacteria are known to use a quorum sensing system to facilitate and stimulate cell to cell communication, mediated via regulation of specific genes. This system is further involved in the modulation of cell density and metabolic and physiological processes that putatively either affect the survival of insect vectors or the establishment of pathogens transmitted by them. The process of quorum sensing generally involves N-acyl homoserine lactones and 2-alkyl-4-quinolones signaling molecules. The present study aimed to detect and identify quorum sensing signaling molecules of AHLs and AHQs type that are secreted by intestinal bacteria, and link their production to their extracellular milieu and intracellular content. Isolates for assessment were obtained from the intestinal tract of Pintomyia evansi (Leishmania insect vector). AHLs and AHQs molecules were detected using chromatography (TLC) assays, with the aid of specific and sensitive biosensors. For identity confirmation, ultra-high-performance liquid chromatography coupled with mass spectrometry was used. TLC assays detected quorum sensing molecules (QSM) in the supernatant of the bacterial isolates and intracellular content. Interestingly, Pseudomonas otitidis, Enterobacter aerogenes, Enterobacter cloacae, and Pantoea ananatis isolates showed a migration pattern similar to the synthetic molecule 3-oxo-C6-HSL (OHHL), which was used as a control. Enterobacter cancerogenus secreted C6-HSL, a related molecules to N-hexanoyl homoserine lactone (HHL), while Acinetobacter gyllenbergii exhibited a migration pattern similar to 2-heptyl-4-quinolone (HHQ) molecules. In comparison to this, 3-oxo-C12-HSL (OdDHL) type molecules were produced by Lysobacter soli, Pseudomonas putida, A. gyllenbergii, Acinetobacter calcoaceticus, and Pseudomonas aeruginosa, while Enterobacter cloacae produced molecules similar to 2-heptyl-3-hydroxy-4-quinolone (PQS). For Pseudomonas putida, Enterobacter aerogenes, P. ananatis, and Pseudomonas otitidis extracts, peak chromatograms with distinct retention times and areas, consistent with the molecules described in case of TLC, were obtained using HPLC. Importantly, P. ananatis produced a greater variety of high QSM concentration, and thus served as a reference for confirmation and identification by UHPLC-MRM-MS/MS. The molecules that were identified included N-hexanoyl-L-homoserine lactone [HHL, C10H18NO3, (M + H)], N-(3-oxohexanoyl)-L-homoserine lactone [OHHL, C10H16NO4, (M + H)], N-(3-oxododecanoyl)-L-homoserine lactone [OdDHL, C16H28NO4, (M + H)], and 2-heptyl-3-hydroxy-4(1H)-quinolone [PQS, C16H22NO2, (M + H)]. Besides this, the detection of diketopiperazines, namely L-Pro-L-Tyr and ΔAla-L-Val cyclopeptides was reported for P. ananatis. These molecules might be potentially associated with the regulation of QSM system, and might represent another small molecule-mediated bacterial sensing system. This study presents the first report regarding the detection and identification of QSM and diketopiperazines in the gut sand fly bacteria. The possible effect of QSM on the establishment of Leishmania must be explored to determine its role in the modulation of intestinal microbiome and the life cycle of Pi. evansi.

2006 ◽  
Vol 4 (1) ◽  
pp. 34-40
Author(s):  
NUR AINI ◽  
AHMAD DWI SETYAWAN

Bacteria communicate using chemical signaling molecules as words. They release, detect, and respond to the accumulation of these molecules, which are called autoinducers. Detection of autoinducers allows bacteria to distinguish between low and high cell population density, and to control gene expression in response to changes the cell number. This process is termed quorum sensing. Many bacterial behaviors are regulated by quorum sensing, including virulence factors on gram negative bacteria. Quorum sensing is a novel target for antimicrobial therapies. Many eukariots including plants, fungus, and animals produce molecules that can interfered bacteria communication, such as halogen furanon from alga Delisea pulchra, N- (heptylsulfanylacetyl)-L-homoserine-lactone from Allium sativum, and flustramine from bryozoan Flustra foliacea.


2006 ◽  
Vol 73 (2) ◽  
pp. 535-544 ◽  
Author(s):  
Joost C. A. Janssens ◽  
Kristine Metzger ◽  
Ruth Daniels ◽  
Dave Ptacek ◽  
Tine Verhoeven ◽  
...  

ABSTRACT N-Acyl homoserine lactones (AHLs) are molecules that are synthesized and detected by many gram-negative bacteria to monitor the population density, a phenomenon known as quorum sensing. Salmonella enterica serovar Typhimurium is an exceptional species since it does not synthesize its own AHLs, while it does encode a LuxR homologue, SdiA, which enables this bacterium to detect AHLs that are produced by other species. To obtain more information about the specificity of the ligand binding by SdiA, we synthesized and screened a limited library of AHL analogues. We identified two classes of analogues that are strong activators of SdiA: the N-(3-oxo-acyl)-homocysteine thiolactones (3O-AHTLs) and the N-(3-oxo-acyl)-trans-2-aminocyclohexanols. To our knowledge, this is the first report of compounds (the 3O-AHTLs) that are able to activate a LuxR homologue at concentrations that are lower than the concentrations of the most active AHLs. SdiA responds with greatest sensitivity to AHTLs that have a keto modification at the third carbon atom and an acyl chain that is seven or eight carbon atoms long. The N-(3-oxo-acyl)-trans-2-aminocyclohexanols were found to be less sensitive to deactivation by lactonase and alkaline pH than the 3O-AHTLs and the AHLs are. We also examined the activity of our library with LuxR of Vibrio fischeri and identified three new inhibitors of LuxR. Finally, we performed preliminary binding experiments which suggested that SdiA binds its activators reversibly. These results increase our understanding of the specificity of the SdiA-ligand interaction, which could have uses in the development of anti-quorum-sensing-based antimicrobials.


2012 ◽  
Vol 37 (2) ◽  
pp. 315-318 ◽  
Author(s):  
Chigusa Okano ◽  
Marina Arai ◽  
Eri Nasuno ◽  
Ken-ichi Iimura ◽  
Tomohiro Morohoshi ◽  
...  

2006 ◽  
Vol 4 (2) ◽  
pp. 45-54
Author(s):  
UMI LESTARI ◽  
ARTINI PANGASTUTI ◽  
ARI SUSILOWATI

Conventional treatment of infectious diseases is based on compounds that kill or inhibit the growth of bacteria. A major concern with this approach is the frequent development of resistance to antimicrobial compounds. The discovery of communication (quorum sensing system) regulating bacterial virulence opens up ways to control certain bacterial infectious without interfering the growth. The fish pathogen Aeromonas hydrophila produces quorum sensing signal, NButanoyl-L-Homoserine Lactone (C4-HSL). C4-HSL regulates exoprotease synthesis, a virulence factor of A. hydrophila. Expression of exoprotease can be blocked by using quorum sensing inhibitor. The purpose of this study was to investigate the inhibiting effect of Curcuma xanthorrhiza (Roxb.) extract to exoprotease production of A. hydrophila. Extraction was conducted by using n-hexane, ethyl acetate and ethanol. The qualitative exoprotease assay result showed that n-hexane extract of C. xanthorrhiza had not effect on growth and exoprotease production of A. hydrophila. Meanwhile, 4% of ethyl acetate and ethanol extract of C. xanthorrhiza can inhibit exoprotease production without affecting A. hydrophilla growth. The quantitative exoprotease assay result showed that 4% of ethyl acetate and ethanol extract can inhibit the exoprotease production by 93,9% and 95,6%. The growth of A. hydrophila was not affected by this extract.


2006 ◽  
Vol 89 (3-4) ◽  
pp. 167-211 ◽  
Author(s):  
Debra Smith ◽  
Jin-Hong Wang ◽  
Jane E. Swatton ◽  
Peter Davenport ◽  
Bianca Price ◽  
...  

2001 ◽  
Vol 69 (7) ◽  
pp. 4661-4666 ◽  
Author(s):  
E. Lutter ◽  
S. Lewenza ◽  
J. J. Dennis ◽  
M. B. Visser ◽  
P. A. Sokol

ABSTRACT The distribution of quorum-sensing genes among strains from seven genomovars of the Burkholderia cepaciacomplex was examined by PCR. cepR and cepI were amplified from B. cepacia genomovars I and III, B. stabilis, and B. vietnamiensis. cepR was also amplified from B. multivorans and B. cepacia genomovar VI. bviIR were amplified from B. vietnamiensis. All genomovars producedN-octanoyl-l-homoserine lactone andN-hexanoyl-l-homoserine lactone.B. vietnamiensis and B. cepacia genomovar VII produced additional N-acyl-l-homoserine lactones.


2008 ◽  
Vol 190 (21) ◽  
pp. 7043-7051 ◽  
Author(s):  
John M. Farrow ◽  
Zoe M. Sund ◽  
Matthew L. Ellison ◽  
Dana S. Wade ◽  
James P. Coleman ◽  
...  

ABSTRACT Pseudomonas aeruginosa is an opportunistic pathogen that causes both acute and chronic infections in immunocompromised individuals. This gram-negative bacterium produces a battery of virulence factors that allow it to infect and survive in many different hostile environments. The control of many of these virulence factors falls under the influence of one of three P. aeruginosa cell-to-cell signaling systems. The focus of this study, the quinolone signaling system, functions through the Pseudomonas quinolone signal (PQS), previously identified as 2-heptyl-3-hydroxy-4-quinolone. This signal binds to and activates the LysR-type transcriptional regulator PqsR (also known as MvfR), which in turn induces the expression of the pqsABCDE operon. The first four genes of this operon are required for PQS synthesis, but the fifth gene, pqsE, is not. The function of the pqsE gene is not known, but it is required for the production of multiple PQS-controlled virulence factors and for virulence in multiple models of infection. In this report, we show that PqsE can activate PQS-controlled genes in the absence of PqsR and PQS. Our data also suggest that the regulatory activity of PqsE requires RhlR and indicate that a pqsE mutant can be complemented for pyocyanin production by a large excess of exogenous N-butyryl homoserine lactone (C4-HSL). Finally, we show that PqsE enhances the ability of Escherichia coli expressing RhlR to respond to C4-HSL. Overall, our data lead us to conclude that PqsE functions as a regulator that is independent of PqsR and PQS but dependent on the rhl quorum-sensing system.


2007 ◽  
Vol 73 (7) ◽  
pp. 2329-2332 ◽  
Author(s):  
Maria Stella Medina-Martínez ◽  
Mieke Uyttendaele ◽  
Andreja Rajkovic ◽  
Pol Nadal ◽  
Johan Debevere

ABSTRACT Degradation of the quorum-sensing signal molecule N-acyl-l-homoserine lactone (AHL) in cocultures was verified with Bacillus cereus and Yersinia enterocolitica in culture medium and in pork extract. Results showed evidence of microbial interaction when the AHL-degrading bacterium and AHL-producing bacterium were cocultured in a food-simulating condition.


2003 ◽  
Vol 185 (21) ◽  
pp. 6456-6462 ◽  
Author(s):  
Claudio Aguilar ◽  
Arianna Friscina ◽  
Giulia Devescovi ◽  
Milan Kojic ◽  
Vittorio Venturi

ABSTRACT Quorum sensing is a regulatory mechanism (operating in response to cell density) which in gram-negative bacteria usually involves the production of N-acyl homoserine lactones (HSL). Quorum sensing in Burkholderia cepacia has been associated with the regulation of expression of extracellular proteins and siderophores and also with the regulation of swarming and biofilm formation. In the present study, several quorum-sensing-controlled gene promoters of B. cepacia ATCC 25416 were identified and characterized. A total of 28 putative gene promoters show CepR-C8-HSL-dependent expression, suggesting that quorum sensing in B. cepacia is a global regulatory system.


Sign in / Sign up

Export Citation Format

Share Document