scholarly journals Disentangling the Influence of Three Major Threats on the Demography of an Albatross Community

2021 ◽  
Vol 8 ◽  
Author(s):  
Jaimie B. Cleeland ◽  
Deborah Pardo ◽  
Ben Raymond ◽  
Geoffrey N. Tuck ◽  
Clive R. McMahon ◽  
...  

Climate change, fisheries and invasive species represent three pervasive threats to seabirds, globally. Understanding the relative influence and compounding nature of marine and terrestrial threats on the demography of seabird communities is vital for evidence-based conservation. Using 20 years of capture-mark-recapture data from four sympatric species of albatross (black-browed Thalassarche melanophris, gray-headed T. chrysostoma, light-mantled Phoebetria palpebrata and wandering Diomedea exulans) at subantarctic Macquarie Island, we quantified the temporal variability in survival, breeding probability and success. In three species (excluding the wandering albatross because of their small population), we also assessed the influence of fisheries, oceanographic and terrestrial change on these rates. The Southern Annular Mode (SAM) explained 20.87–29.38% of the temporal variability in survival in all three species and 22.72–28.60% in breeding success for black-browed and gray-headed albatross, with positive SAM events related to higher success. The El Niño Southern Oscillation (ENSO) Index explained 21.14–44.04% of the variability in survival, with higher survival rates following La Niña events. For black-browed albatrosses, effort in south-west Atlantic longline fisheries had a negative relationship with survival and explained 22.75–32.21% of the variability. Whereas increased effort in New Zealand trawl fisheries were related to increases in survival, explaining 21.26–28.29 % of variability. The inclusion of terrestrial covariates, reflecting extreme rainfall events and rabbit-driven habitat degradation, explained greater variability in trends breeding probability than oceanographic or fisheries covariates for all three species. These results indicate managing drivers of demographic trends that are most easily controlled, such as fisheries and habitat degradation, will be a viable option for some species (e.g., black-browed albatross) but less effective for others (e.g., light-mantled albatross). Our results illustrate the need to integrate fisheries, oceanographic and terrestrial processes when assessing demographic variability and formulating the appropriate management response.

Climate ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 71
Author(s):  
Edgard Gonzales ◽  
Eusebio Ingol

In 2017, extreme rainfall events occurred in the northern portion of Peru, causing nearly 100,000 victims, according to the National Emergency Operations Center (COEN). This climatic event was attributed to the occurrence of the El Niño Southern Oscillation (ENSO). Therefore, the main objective of this study was to determine and differentiate between the occurrence of canonical ENSO, with a new type of ENSO called “El Niño Costero” (Coastal El Niño). The polynomial equation method was used to analyze the data from the different types of existing ocean indices to determine the occurrence of ENSO. It was observed that the anomalies of sea surface temperature (SST) 2.5 °C (January 2016) generated the “Modoki El Niño” and that the anomaly of SST −0.3 °C (January 2017) generated the “Modoki La Niña”; this sequential generation generated El Niño Costero. This new knowledge about the sui generis origin of El Niño Costero, based on the observations of this analysis, will allow us to identify and obtain important information regarding the occurrence of this event. A new oceanic index called the Pacific Regional Equatorial Index (PREI) was proposed to follow the periodic evolution and forecast with greater precision a new catastrophic event related to the occurrence of El Niño Costero and to implement prevention programs.


2020 ◽  
Author(s):  
Michelle Maclennan ◽  
Jan Lenaerts

<p>High snowfall events on Thwaites Glacier are a key influencer of its ice mass change. In this study, we diagnose the mechanisms for orographic precipitation on Thwaites Glacier by analyzing the atmospheric conditions that lead to high snowfall events. A high-resolution regional climate model, RACMO2, is used in conjunction with MERRA-2 and ERA5 reanalysis to map snowfall and associated atmospheric conditions over the Amundsen Sea Embayment. We examine these conditions during high snowfall events over Thwaites Glacier to characterize the drivers of the precipitation and their spatial and temporal variability. Then we examine the seasonal differences in the associated weather patterns and their correlations with El Nino Southern Oscillation and the Southern Annular Mode. Understanding the large-scale atmospheric drivers of snowfall events allows us to recognize how these atmospheric drivers and consequent snowfall climatology will change in the future, which will ultimately improve predictions of accumulation on Thwaites Glacier.</p>


2020 ◽  
Author(s):  
Jose Luis Salinas ◽  
Rebecca Smith ◽  
Shuangcai Li ◽  
Ludovico Nicotina ◽  
Arno Hilberts

<p>Damages from flooding in China account on average for 60-70% of the total Annual Losses derived from natural catastrophes. The extreme rainfall events responsible for these inundations can be broadly categorised in two well differentiated mechanisms: Tropical Cyclone (TC) induced, and non Tropical Cyclone induced (nonTC) precipitation. Between 2001 and 2015, inland nonTC rainfall flood events occurred roughly with double the frequency as TC events. While TC events can be highly destructive for coastal locations, over the entire China territory nonTC flooding accounted for more than half of the total economic flood loss for events with significant socio-economic impact, highlighting the importance of the nonTC flooding mechanism on the regional and national scale.</p><p>Large-scale modes of climate variability modulate in different ways TC and nonTC induced precipitation, both in the frequency and the magnitude of the events. In a stochastic rainfall generation framework, it becomes therefore useful to model these two mechanisms separately and include their differentiated long-term climatic influences in order to fully reproduce the overall observed rainfall variability. This work presents results on the effect of ENSO and Southern Oscillation Index (SOI) values on seasonal rainfall in China, and how to include this climatic variability in stochastic rainfall for flood catastrophe modelling.</p>


2021 ◽  
Author(s):  
Moses.A Ojara ◽  
Yunsheng Lou ◽  
Hasssen Babaousmail ◽  
Peter Wasswa

Abstract East African countries (Uganda, Kenya, Tanzania, Rwanda, and Burundi) are prone to weather extreme events. In this regard; the past occurrence of extreme rainfall events is analyzed for 25 stations following the Expert Team on Climate Change Detection and Indices (ETCCDI) regression method. Detrended Fluctuation Analysis (DFA) is used to show the future development of extreme events. Pearson’s correlation analysis is performed to show the relationship of extreme events between different rainfall zones and their association with El Niño -Southern Oscillation (ENSO and Indian Ocean dipole (IOD) IOD-DMI indices. Results revealed that the consecutive wet day's index (CWD) was decreasing trend in 72% of the stations analyzed, moreover consecutive dry days (CDD) index also indicated a positive trend in 44% of the stations analyzed. Heavy rainfall days index (R10mm) showed a positive trend at 52% of the stations and was statistically significant at a few stations. In light of the extremely heavy rainfall days (R25mm) index, 56% of the stations revealed a decreasing trend for the index and statistically significant trend at some stations. Further, a low correlation coefficient of extreme rainfall events in the regions; and between rainfall extreme indices with the atmospheric teleconnection indices (Dipole Mode Index-DMI and Nino 3.4) (r = -0.1 to r = 0.35). Most rainfall zones showed a positive correlation between the R95p index and DMI, while 5/8 of the rainfall zones experienced a negative correlation between Nino 3.4 index and the R95p. In light of the highly variable trends of extremes events, we recommend planning adaptation and mitigation measures that consider the occurrence of such high variability. Measures such as rainwater harvesting, stored and used during needs, planned settlement, and improved drainage systems management supported by accurate climate and weather forecasts is highly advised.


2015 ◽  
Vol 112 (15) ◽  
pp. 4576-4581 ◽  
Author(s):  
Rhawn F. Denniston ◽  
Gabriele Villarini ◽  
Angelique N. Gonzales ◽  
Karl-Heinz Wyrwoll ◽  
Victor J. Polyak ◽  
...  

Assessing temporal variability in extreme rainfall events before the historical era is complicated by the sparsity of long-term “direct” storm proxies. Here we present a 2,200-y-long, accurate, and precisely dated record of cave flooding events from the northwest Australian tropics that we interpret, based on an integrated analysis of meteorological data and sediment layers within stalagmites, as representing a proxy for extreme rainfall events derived primarily from tropical cyclones (TCs) and secondarily from the regional summer monsoon. This time series reveals substantial multicentennial variability in extreme rainfall, with elevated occurrence rates characterizing the twentieth century, 850–1450 CE (Common Era), and 50–400 CE; reduced activity marks 1450–1650 CE and 500–850 CE. These trends are similar to reconstructed numbers of TCs in the North Atlantic and Caribbean basins, and they form temporal and spatial patterns best explained by secular changes in the dominant mode of the El Niño/Southern Oscillation (ENSO), the primary driver of modern TC variability. We thus attribute long-term shifts in cyclogenesis in both the central Australian and North Atlantic sectors over the past two millennia to entrenched El Niño or La Niña states of the tropical Pacific. The influence of ENSO on monsoon precipitation in this region of northwest Australia is muted, but ENSO-driven changes to the monsoon may have complemented changes to TC activity.


2010 ◽  
Vol 11 (4) ◽  
pp. 950-965 ◽  
Author(s):  
Guobin Fu ◽  
Neil R. Viney ◽  
Stephen P. Charles ◽  
Jianrong Liu

Abstract The temporal variability of the frequency of short-duration extreme precipitation events in Australia for the period 1910–2006 is examined using the high-quality rainfall dataset identified by the Bureau of Meteorology, Australia, for 189 stations. Extreme events are defined by duration and recurrence interval: 1, 5, 10, and 30 days, and 1, 5, and 20 yr, respectively. The results indicate that temporal variations of the extreme precipitation index (EPI) for various durations and recurrence intervals in the last 100 yr, except for the low frequencies before 1918, have experienced three U-shaped cycles: 1918–53, 1953–74, and 1974–2006. Seasonal results indicate that about two-thirds of 1-day, 1-yr recurrence interval extreme events occur from December to March. Time series of anomalies of the regional EPIs for four regions indicate that northeast Australia and southeast Australia have almost the same temporal variation as the national anomalies, South Australia experienced a negative anomaly of extreme rainfall events in the mid-1950s, and southwest Western Australia (SWWA) experienced relatively small temporal variation. The relationships between extreme rainfall events and the Southern Oscillation index (SOI) and the interdecadal Pacific oscillation (IPO) indicate that extreme rainfall events in Australia have a strong relationship with both, especially during La Niña years and after 1942.


2017 ◽  
Vol 47 (5) ◽  
pp. 1151-1168 ◽  
Author(s):  
Christopher C. Chapman

AbstractThe frontal structure of the Southern Ocean is investigated using the Wavelet/Higher Order Statistics Enhancement (WHOSE) frontal detection method, introduced in Chapman’s work. This methodology is applied to 21 yr of daily gridded absolute dynamic topography (ADT) data to obtain daily maps of the locations of the fronts. By forming frontal occurrence frequency maps and then approximating these occurrence maps by a superposition of simple functions, the time-mean locations of the fronts, as well as a measure of their capacity to meander, are obtained and related to the frontal locations found by previous studies. The spatial and temporal variability of the frontal structure is then considered. The number of fronts is found to be highly variable throughout the Southern Ocean, increasing (splitting) downstream of large bathymetric features and decreasing (merging) in regions where the fronts are tightly controlled by the underlying topography. These splitting/merging events are related to changes in the underlying frontal structure whereby regions of high frontal occurrence cross or spread over streamfunction contours. In contrast to the number of fronts, frontal meandering remains relatively constant throughout the Southern Ocean. Little to no migration of the fronts over the 1993–2014 time period is found, and there is only weak sensitivity of frontal positions to atmospheric forcing related to the southern annular mode or the El Niño–Southern Oscillation. Finally, the implications of these results for the study of cross-stream tracer transport are discussed.


2020 ◽  
Vol 117 (29) ◽  
pp. 16816-16823 ◽  
Author(s):  
Mariano S. Morales ◽  
Edward R. Cook ◽  
Jonathan Barichivich ◽  
Duncan A. Christie ◽  
Ricardo Villalba ◽  
...  

South American (SA) societies are highly vulnerable to droughts and pluvials, but lack of long-term climate observations severely limits our understanding of the global processes driving climatic variability in the region. The number and quality of SA climate-sensitive tree ring chronologies have significantly increased in recent decades, now providing a robust network of 286 records for characterizing hydroclimate variability since 1400 CE. We combine this network with a self-calibrated Palmer Drought Severity Index (scPDSI) dataset to derive the South American Drought Atlas (SADA) over the continent south of 12°S. The gridded annual reconstruction of austral summer scPDSI is the most spatially complete estimate of SA hydroclimate to date, and well matches past historical dry/wet events. Relating the SADA to the Australia–New Zealand Drought Atlas, sea surface temperatures and atmospheric pressure fields, we determine that the El Niño–Southern Oscillation (ENSO) and the Southern Annular Mode (SAM) are strongly associated with spatially extended droughts and pluvials over the SADA domain during the past several centuries. SADA also exhibits more extended severe droughts and extreme pluvials since the mid-20th century. Extensive droughts are consistent with the observed 20th-century trend toward positive SAM anomalies concomitant with the weakening of midlatitude Westerlies, while low-level moisture transport intensified by global warming has favored extreme rainfall across the subtropics. The SADA thus provides a long-term context for observed hydroclimatic changes and for 21st-century Intergovernmental Panel on Climate Change (IPCC) projections that suggest SA will experience more frequent/severe droughts and rainfall events as a consequence of increasing greenhouse gas emissions.


2014 ◽  
Vol 27 (15) ◽  
pp. 6035-6050 ◽  
Author(s):  
Andrew D. King ◽  
Nicholas P. Klingaman ◽  
Lisa V. Alexander ◽  
Markus G. Donat ◽  
Nicolas C. Jourdain ◽  
...  

Abstract Leading patterns of observed monthly extreme rainfall variability in Australia are examined using an empirical orthogonal teleconnection (EOT) method. Extreme rainfall variability is more closely related to mean rainfall variability during austral summer than in winter. The leading EOT patterns of extreme rainfall explain less variance in Australia-wide extreme rainfall than is the case for mean rainfall EOTs. The authors illustrate that, as with mean rainfall, the El Niño–Southern Oscillation (ENSO) has the strongest association with warm-season extreme rainfall variability, while in the cool season the primary drivers are atmospheric blocking and the subtropical ridge. The Indian Ocean dipole and southern annular mode also have significant relationships with patterns of variability during austral winter and spring. Leading patterns of summer extreme rainfall variability have predictability several months ahead from Pacific sea surface temperatures (SSTs) and as much as a year in advance from Indian Ocean SSTs. Predictability from the Pacific is greater for wetter-than-average summer months than for months that are drier than average, whereas for the Indian Ocean the relationship has greater linearity. Several cool-season EOTs are associated with midlatitude synoptic-scale patterns along the south and east coasts. These patterns have common atmospheric signatures denoting moist onshore flow and strong cyclonic anomalies often to the north of a blocking anticyclone. Tropical cyclone activity is observed to have significant relationships with some warm-season EOTs. This analysis shows that extreme rainfall variability in Australia can be related to remote drivers and local synoptic-scale patterns throughout the year.


Sign in / Sign up

Export Citation Format

Share Document