scholarly journals Taxonomic and Functional Patterns of Benthic Communities in Southern Temperate Tidal Flats

2021 ◽  
Vol 8 ◽  
Author(s):  
Orlando Lam-Gordillo ◽  
Ryan Baring ◽  
Sabine Dittmann

Coastal ecosystems are vulnerable to anthropogenic disturbances which can cause loss of benthic macrofauna and their ecosystem functioning. Despite the importance of functional assessments for conservation and management, knowledge gaps persist on the generality of how the diversity and functional traits of benthic communities influence ecosystem functioning. We investigated eight sites in three different habitats across ~1,260 km of coastline, to evaluate patterns between taxonomic and functional diversity of benthic macrofauna, and the relationship between benthic macrofauna, functional traits and environmental conditions. A total of 74 benthic macrofauna taxa were identified. Significant differences across sites and season were found for metrics based on taxonomic and functional traits. Multivariate analysis revealed spatial-temporal differences, which were more evident based on taxa than functional traits. Functional diversity also showed spatial and temporal differences and was positively correlated with the number of taxa. The dominant functional traits modalities were deposit feeders, with large (>20 mm) body size, burrowers, bioirrigators, deeper than 3 cm in sediments, and irregular morphology. Novel Generalized Linear Latent Variable Models (GLLVM) uncovered several site-dependent relationships between taxa, traits and environmental conditions. Functional redundancy was lowest in a highly modified lagoon, and highest in a more pristine embayment. The outcomes from this study showed site-dependent patterns of benthic communities based on either taxonomic or functional metrics, highlighting that both perspectives are complementary to obtain a holistic understanding of the functioning in marine sediments under environmental change.

Forests ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 774 ◽  
Author(s):  
Wensheng Bu ◽  
Cancan Zhang ◽  
Jihong Huang ◽  
Runguo Zang ◽  
Yi Ding ◽  
...  

Research Highlights: We try to evaluate the relative contribution of environmental factors and functional traits on aboveground biomass in a species rich tropical forest ecosystem after a 40-years natural recovery. Background and Objectives: Functional traits have a potential to incorporate community dynamics into the impacts of disturbance histories or environmental conditions on ecosystem functioning, but few studies have been conducted to understand these processes. Materials and Methods: We measured plant functional traits and soil properties in the tropical montane rainforests on Hainan Island, China, which had experienced different disturbance histories (clear cutting, selective logging, and old-growth) 40 years ago. A structural equation model was used to elucidate how disturbance histories and soil factors influence aboveground biomass (AGB) across different size classes (saplings, treelets, and adult trees) through plant functional traits. Results: The results demonstrated logging stimulated seedling establishment but decreased AGB of adult trees and wood density at community-level (CWM_WD) of sapling and adult tree. Generally, CWM_WD of sapling, treelet, and adult tree decreased linearly with the increasing of specific leaf area at community-level (CWM_SLA) in old-growth forest and these two disturbed forests. Moreover, CWM_SLA explained more variation of CWM_WD with increasing intensity of logging within sapling, treelet, and adult tree. CWM_SLA and CWM_WD not only responded to environmental conditions and disturbance intensity but also affected AGB in all size classes; meanwhile, CWM_SLA was a major driver of AGB. CWM_SLA had a stronger effect on AGB in sapling and treelet classes than on the adult tree class. Conclusions: Our results suggested that disturbance history and environmental factors could directly or indirectly affect ecosystem functioning through plant functional traits. Functional traits always had a stronger effect on AGB than environmental conditions. Moreover, CWM_SLA is a key trait that can be used to link the relationship between environmental conditions and AGB.


Author(s):  
Jonathan S Lefcheck ◽  
J. Emmett Duffy

The use of functional traits to explain biodiversity effects on ecosystem functioning has attracted intense recent interest, yet very few a priori manipulations of functional diversity have been attempted to date, especially from a food web perspective. Here, we simultaneously manipulated multiple functional traits of estuarine grazers and predators within multiple levels of species richness to test whether species richness or functional diversity is a better predictor of ecosystem functioning in multitrophic estuarine food webs. Community functional diversity better predicted the majority of ecosystem responses based on results from generalized linear mixed effects models. Structural equation modeling revealed that this outcome was independently attributable to functional diversity of both trophic levels, with stronger effects observed for predators. Functional complementarity was also important, as species with different combinations of traits influenced different ecosystem functions. Our study is the first to extend experimental investigations of functional diversity to a multilevel food web, and demonstrates that functional diversity is more effective than species richness in predicting ecosystem functioning in a food web context.


2021 ◽  
Author(s):  
Bárbara Rocha Cardeli ◽  
Bianca Fazio Rius ◽  
Caio Fascina ◽  
João Paulo Darela-Filho ◽  
Gabriela Martins Sophia ◽  
...  

<p>The increase of CO<sub>2</sub> concentrations implies direct and indirect (by changing climate) impacts on the terrestrial ecosystem. Several Dynamic Global Vegetation Models (DGVMs) have been developed to better understand the response of vegetation to climate change. However, the representation of plant diversity through a small set of Plant Functional Types (PFTs) adopted by the majority of DGVMs undermines their ability to represent functional diversity and fundamental interactions between these different life strategies of plants, like competition, which has been shown to be paramount in determining ecosystem functioning. Studies have shown that increasing CO<sub>2</sub> concentration may determine the outcome of vegetation competition and, as a consequence, the ability to adapt to the environment, functional diversity, and community assembly mechanisms. Thus, the inclusion of competitive dynamics in these models becomes strategic to improve predictions and understanding the effects of climate change on vegetation and how it affects change in carbon fluxes and stocks in the community. In that sense, this project aims to contribute to the development of a light competition module within CAETÊ model (<strong>C</strong>Arbon and <strong>E</strong>cosystem functional <strong>T</strong>rait <strong>E</strong>valuation model) which involves the implementation of allometric relations between plant organs. As a trait-based model, CAETÊ seeks to represent plant functional diversity in a less discrete way through the usage of variant values for functional traits. For this purpose, two key functional traits that are closely related to competition for light are employed as variants: <em>wood density </em>(WD) and <em>specific leaf area </em>(SLA). The main objective is to understand how light competition related to plant functional traits alters the response of Amazon plant communities under changing environmental conditions. As preliminary results, the algorithms containing the allometric and competition equations were developed outside the main model code and represent plant dynamics trade-offs between the variant functional traits and plant physiology and survivorship: WD relates to strategies of mortality and height growth. For example, high values of WD [1g/cm<sup>-3</sup>] are related to low heights [~30m.] and, low heights incur higher mortality rates; SLA relates to light competitive effect, Leaf Economics Spectrum, and LAI (leaf area index) determination, one of the most important parameters that determine the absorption of light by different life strategies. These trade-offs allow the representation of different plant life competition strategies. We expected that the light restriction for some functional strategies may incur a decrease in functional dominance and photosynthesis rate, consequently changing net primary productivity and after all the functional structure of the community. For functional diversity, it is expected changes in functional richness and functional divergence (related to the strength that competition exerts in the community) in order to favor strategies that better deal with the new environmental conditions simulated by CAETÊ with increasing [CO<sub>2</sub>] to 600 ppmv, for example. Finally, it is expected that this approach may contribute to improving the representation of competition for light in DGVMs to more assertively obtain the effects of climate changes on vegetation and ecosystem dynamics. Final results will be obtained until the EGU Congress takes place.</p>


2016 ◽  
Author(s):  
Linhai Zhu ◽  
Jonathan S Lefcheck ◽  
Bojie Fu

The use of functional traits has increased exponentially in ecology, particularly in attempting to explain ecosystem functioning. This popularity has led to many proposed definitions of functional traits, which in turn has informed recommendations about how to gather, summarize, and analyze trait data. In this paper, we revisit the definition of the functional trait from the perspective of physiological, community and ecosystem ecologists, and reason towards a broad, unrestrictive, and applicable definition. We then demonstrate how a popular technique, ordination, which is used to collapse multivariate trait data into orthogonal axes, undermines this definition and the primary benefit of functional traits. We outline the conceptual pitfalls associated with ordination, and make specific suggestions about alternative methods that progress functional traits as generalizable proxies for how organisms affect ecosystem processes. We hope these suggestions will improve our ability to move towards an ecological synthesis using a trait-based approach.


2016 ◽  
Vol 24 (8) ◽  
pp. 922-931 ◽  
Author(s):  
Lingjie Lei ◽  
◽  
Deliang Kong ◽  
Xiaoming Li ◽  
Zhenxing Zhou ◽  
...  

Two medium-scale ecosystems (mesocosms) were built on the Oslofjord: one a hard-bottom intertidal system and the other a subtidal soft-sediment system. The hard-bottom mesocosm consists of four basins, two controls and two which were dosed with diesel-oil (129 μg 1 -1 a high oil (HO) dose and 29 μg 1 -1 a low oil (LO) dose). Both oil doses caused high mortality of Mytilus edulis and growth was reduced in the macroalgae Ascophyllum nodosum and Laminaria digitata . Recruitment of Littorina littorea was also affected by oil so that populations declined over time. Subtidal benthic communities have been established in the mesocosm and show variations in sediment chemistry within the range found in the field. Although recruitment of benthic macrofauna is reduced, dominant species and species structure remain closely similar to that in the field over six months. Bioturbation effects studied in the mesocosm have shown the important influence of large, rare species in structuring benthic communities, a finding which would not be possible in nature by diving or by the use ofsubmersibles. Preliminary results from a community taken from 200 m depth and established in the mesocosm suggest that it is now possible to do detailed manipulation experiments on communities simulating the whole continental shelf.


2014 ◽  
Vol 1 ◽  
Author(s):  
Erik Kristensen ◽  
Matthieu Delefosse ◽  
Cintia O. Quintana ◽  
Mogens R. Flindt ◽  
Thomas Valdemarsen

2018 ◽  
Vol 75 (7) ◽  
pp. 2463-2475 ◽  
Author(s):  
Romain Frelat ◽  
Alessandro Orio ◽  
Michele Casini ◽  
Andreas Lehmann ◽  
Bastien Mérigot ◽  
...  

Abstract Fisheries and marine ecosystem-based management requires a holistic understanding of the dynamics of fish communities and their responses to changes in environmental conditions. Environmental conditions can simultaneously shape the spatial distribution and the temporal dynamics of a population, which together can trigger changes in the functional structure of communities. Here, we developed a comprehensive framework based on complementary multivariate statistical methodologies to simultaneously investigate the effects of environmental conditions on the spatial, temporal and functional dynamics of species assemblages. The framework is tested using survey data collected during more than 4000 fisheries hauls over the Baltic Sea between 2001 and 2016. The approach revealed the Baltic fish community to be structured into three sub-assemblages along a strong and temporally stable salinity gradient decreasing from West to the East. Additionally, we highlight a mismatch between species and functional richness associated with a lower functional redundancy in the Baltic Proper compared with other sub-areas, suggesting an ecosystem more susceptible to external pressures. Based on a large dataset of community data analysed in an innovative and comprehensive way, we could disentangle the effects of environmental changes on the structure of biotic communities—key information for the management and conservation of ecosystems.


Sign in / Sign up

Export Citation Format

Share Document