scholarly journals The Rapid Population Collapse of a Key Marine Predator in the Northern Antarctic Peninsula Endangers Genetic Diversity and Resilience to Climate Change

2022 ◽  
Vol 8 ◽  
Author(s):  
Douglas J. Krause ◽  
Carolina A. Bonin ◽  
Michael E. Goebel ◽  
Christian S. Reiss ◽  
George M. Watters

Antarctic fur seals (AFS) are an ecologically important predator and a focal indicator species for ecosystem-based Antarctic fisheries management. This species suffered intensive anthropogenic exploitation until the early 1900s, but recolonized most of its former distribution, including the southern-most colony at Cape Shirreff, South Shetland Islands (SSI). The IUCN describes a single, global AFS population of least concern; however, extensive genetic analyses clearly identify four distinct breeding stocks, including one in the SSI. To update the population status of SSI AFS, we analyzed 20 years of field-based data including population counts, body size and condition, natality, recruitment, foraging behaviors, return rates, and pup mortality at the largest SSI colony. Our findings show a precipitous decline in AFS abundance (86% decrease since 2007), likely driven by leopard seal predation (increasing since 2001, p << 0.001) and potentially worsening summer foraging conditions. We estimated that leopard seals consumed an average of 69.3% (range: 50.3–80.9%) of all AFS pups born each year since 2010. AFS foraging-trip durations, an index of their foraging habitat quality, were consistent with decreasing krill and fish availability. Significant improvement in the age-specific over-winter body condition of AFS indicates that observed population declines are driven by processes local to the northern Antarctic Peninsula. The loss of SSI AFS would substantially reduce the genetic diversity of the species, and decrease its resilience to climate change. There is an urgent need to reevaluate the conservation status of Antarctic fur seals, particularly for the rapidly declining SSI population.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
David March ◽  
Massimiliano Drago ◽  
Manel Gazo ◽  
Mariluz Parga ◽  
Diego Rita ◽  
...  

AbstractDetailed knowledge of habitat use by marine megafauna is critical to understand their ecological roles and for the adequate management of marine resources. Antarctic fur seals (Arctocephalus gazella) inhabiting the Atlantic sector of the Southern Ocean prey largely on Antarctic krill (Euphausia superba) and play a central role in managing the krill fishery. Here, we assessed the demographic structure of three post-mating, early moult male haul-outs in the South Shetland Islands in early March and calculated the relative contribution of juveniles (1–4 years old) and sub-adult males (5–6 years) to the population remaining in maritime Antarctica after the breeding season. We also satellite tagged 11 juvenile males and four sub-adult males to analyze their movements and develop a species distribution model including both age classes. Our results highlighted the dominance of young individuals in the male population, revealed that they do not behave as central place foragers and identified key environmental drivers that affected their distribution at-sea throughout winter. Predicted potential foraging habitat overlapped highly with the known distribution of Antarctic krill, and identified the waters off the western Antarctic Peninsula and the Scotia Sea as the core of the distribution area of juvenile and sub-adult male Antarctic fur seals in winter. This pattern is similar to that of adult males but totally different from that of adult females, as the latter overwinter in areas at latitude 45–55° S. This segregation has implications for the ecology and management of the krill fishery.


Polar Record ◽  
2009 ◽  
Vol 46 (3) ◽  
pp. 210-221 ◽  
Author(s):  
J. Stephen Dibbern

ABSTRACTDeception Island in the South Shetland Islands was the site of some of the earliest commercial activity to be carried out in the Antarctic with the early 19th century hunting of Antarctic fur seals. Nearly a century later it was the site of the most extensive anchorage for the reconstructed ships and ocean liners used as non-pelagic whale processing factories. Deception was also the site of what is the only successful land based commercial activity in Antarctic history. The Hektor whaling station operated in Whalers Bay from 1912 until 1931. Most of the remains of the station have now been obliterated by the volcanic activity that occurred in the late 1960s and 1970. By the later part of the twentieth century Deception Island had become a regular stop for the growing Antarctic tourist cruise industry. No other place in Antarctica has been so thoroughly identified with commercial activity.


2021 ◽  
Vol 25 (6) ◽  
pp. 3227-3244
Author(s):  
Ulrike Falk ◽  
Adrián Silva-Busso

Abstract. There are only a small number of recent publications discussing glacial runoff in Antarctica, and even fewer of them deal with the groundwater flow discharge. This paper focuses on the groundwater flow aspects and is based on a detailed study performed on a small hydrological catchment, informally called Potter basin, located on King George Island (KGI; Isla 25 de Mayo), South Shetland Islands, at the northern tip of the Antarctic Peninsula. The basin is representative for the rugged coastline of the northern Antarctic Peninsula and is discussed as a case study for the possible future evolution of similar basins further to the south. A conceptual hydrogeological model has been defined using vertical electrical soundings (VESs), geological and hydrogeological surveying methods, geomorphological interpretation based on satellite imagery, permeability tests, piezometric level measurements, meteorological, geocryological and glaciological data sets. The transmissivities of the fluvial talik aquifer and suprapermafrost aquifer range from 162.0 to 2719.9×10-5 m2 s−1 and in basaltic fissured aquifers from 3.47 to 5.79×10-5 m2 s−1. The transmissivities found in the active layer of hummocky moraines amount to 75.23×10-5 m2 s−1 and to 163.0×10-5 m2 s−1 in the sea deposits, and in the fluvioglacial deposits, they were observed between 902.8 and 2662.0×10-5 m2 d−1. Finally, the groundwater flow discharge was assessed to 0.47 m3 s−1 (during the austral summer months of January and February), and the total groundwater storage was estimated to 560×103 m3. The Antarctic Peninsula region has experienced drastic climatological changes within the past five decades. Under the Intergovernmental Panel on Climate Change scenarios, a further warming of the polar regions can be expected as polar amplification of our changing climate. Although the basin in consideration is small and results are valid only during austral summers with surface air temperatures above the freezing point, it serves as model study that can be regarded as representative for the western coastline of the Antarctic Peninsula further south under expected future warming, with surface air temperatures periodically surpassing freezing point. This data can be used to adjust glacial mass balance assessments in the region and to improve the understanding of coastal sea water processes, and their effects on the marine biota, as a consequence of the global climate change.


2008 ◽  
Vol 34 (2) ◽  
pp. 193-199 ◽  
Author(s):  
Ingrid N. Visser ◽  
Matt P. Drennan ◽  
Richard W. White ◽  
Stephen F. MacLean ◽  
Lisa C. Lagerstrom ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Thomas Kalama Mkare ◽  
Bettine Jansen van Vuuren ◽  
Peter R. Teske

AbstractHistorical demographic events shape genetic diversity that remains evident in the genomes of contemporary populations. In the case of species that are of conservation concern, this information helps to unravel evolutionary histories that can be critical in guiding conservation efforts. The Knysna seahorse, Hippocampus capensis, is the world’s most endangered seahorse species, and it presently survives in only three estuaries on the South African south coast. Factors that contributed to the species becoming endangered are unclear; additionally, the lack of information on whether the three populations should be managed separately because of potential long-term isolation hampers effective management efforts. In the present study, we reconstructed the seahorses’ demographic history using a suite of microsatellite loci. We found that the largest population (Knysna Estuary) has colonised the other estuaries relatively recently (< 450 years ago), and that its population size is comparatively large and stable. Neither of the other two populations shows signs of long-term reductions in population size. The high conservation status of the species is thus a result of its limited range rather than historical population declines. Our findings indicate that the long-term survival of H. capensis depends primarily on the successful management of the Knysna population, although the other estuaries may serve as reservoirs of genetic diversity.


Sign in / Sign up

Export Citation Format

Share Document