scholarly journals Colloidal Plasmonic Nanoparticles for Ultrafast Optical Switching and Laser Pulse Generation

2018 ◽  
Vol 5 ◽  
Author(s):  
Xiaofeng Liu
2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Hanan Hamamera ◽  
Filipe Souza Mendes Guimarães ◽  
Manuel dos Santos Dias ◽  
Samir Lounis

AbstractThe ultimate control of magnetic states of matter at femtosecond (or even faster) timescales defines one of the most pursued paradigm shifts for future information technology. In this context, ultrafast laser pulses developed into extremely valuable stimuli for the all-optical magnetization reversal in ferrimagnetic and ferromagnetic alloys and multilayers, while this remains elusive in elementary ferromagnets. Here we demonstrate that a single laser pulse with sub-picosecond duration can lead to the reversal of the magnetization of bulk nickel, in tandem with the expected demagnetization. As revealed by realistic time-dependent electronic structure simulations, the central mechanism involves ultrafast light-induced torques that act on the magnetization. They are only effective if the laser pulse is circularly polarized on a plane that contains the initial orientation of the magnetization. We map the laser pulse parameter space enabling the magnetization switching and unveil rich intra-atomic orbital-dependent magnetization dynamics featuring transient inter-orbital non-collinear states. Our findings open further perspectives for the efficient implementation of optically-based spintronic devices.


2021 ◽  
Author(s):  
Hanan Hamamera ◽  
Filipe Souza Mendes Guimarães ◽  
Manuel dos Santos Dias ◽  
Samir Lounis

Abstract The ultimate control of magnetic states of matter at femtosecond (or even faster) timescales defines one of the most pursued paradigm shifts for future information technology. In this context, ultrafast laser pulses developed into extremely valuable stimuli for the all-optical magnetisation reversal in ferrimagnetic and ferromagnetic alloys and multilayers, while this remains elusive in elementary ferromagnets. Here we demonstrate that a single laser pulse with sub-picosecond duration can lead to the reversal of the magnetisation of bulk nickel, in tandem with the expected demagnetisation. As revealed by realistic time-dependent electronic structure simulations, the central mechanism is ultrafast light-induced torques acting on the magnetisation, which are only effective if the laser pulse is circularly polarised on a plane that contains the initial orientation of the magnetisation. We map the laser pulse parameter space enabling the magnetisation switching and unveil rich intra-atomic orbital-dependent magnetisation dynamics featuring transient inter-orbital non-collinear states. Our findings open further perspectives for the efficient implementation of optically-based spintronic devices.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Chuangtang Wang ◽  
Yongmin Liu

Abstract The interaction between ultrafast lasers and magnetic materials is an appealing topic. It not only involves interesting fundamental questions that remain inconclusive and hence need further investigation, but also has the potential to revolutionize data storage technologies because such an opto-magnetic interaction provides an ultrafast and energy-efficient means to control magnetization. Fruitful progress has been made in this area over the past quarter century. In this paper, we review the state-of-the-art experimental and theoretical studies on magnetization dynamics and switching in ferromagnetic materials that are induced by ultrafast lasers. We start by describing the physical mechanisms of ultrafast demagnetization based on different experimental observations and theoretical methods. Both the spin-flip scattering theory and the superdiffusive spin transport model will be discussed in detail. Then, we will discuss laser-induced torques and resultant magnetization dynamics in ferromagnetic materials. Recent developments of all-optical switching (AOS) of ferromagnetic materials towards ultrafast magnetic storage and memory will also be reviewed, followed by the perspectives on the challenges and future directions in this emerging area.


2005 ◽  
Vol 2 (8) ◽  
pp. 3015-3018
Author(s):  
R. Quintero-Torres ◽  
E. Vázquez-Cerón ◽  
E. Rodríguez-Rodríguez ◽  
Andreas Stintz ◽  
Jean-Claude Diels

2001 ◽  
Vol 15 (28n30) ◽  
pp. 3628-3632 ◽  
Author(s):  
M. Ashida ◽  
T. Ogasawara ◽  
N. Motoyama ◽  
H. Eisaki ◽  
S. Uchida ◽  
...  

The dimensionality dependence of optical nonlinearity in cuprates was investigated by sub-picosecond pump-probe transmission measurements in the near-infrared region. It was found that cuprates with one-dimensional Cu-O networks show nonlinearity one order of magnitude larger than that of conventional band semiconductors and picosecond relaxation of the excited state. In contrast, a two-dimensional cuprate shows one order of magnitude smaller nonlinearity and slower decay of the excited state, as well as picosecond relaxation. The possibility for application of the present material to all-optical switching devices is also discussed.


2017 ◽  
Vol 44 (6) ◽  
pp. 0606001
Author(s):  
周丹丹 Zhou Dandan ◽  
许党朋 Xu Dangpeng ◽  
田小程 Tian Xiaocheng ◽  
张锐 Zhang Rui ◽  
宗兆玉 Zong Zhaoyu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document