scholarly journals Corrosion Behavior of Al0.1CoCrFeNi High Entropy Alloy in Various Chloride-Containing Solutions

2021 ◽  
Vol 7 ◽  
Author(s):  
K. Wang ◽  
A. D. Lan ◽  
J. W. Qiao

The present work investigates the corrosion behavior of Al0.1CoCrFeNi high entropy alloy (HEA) in various concentrations of chloride-containing solutions. Electrochemical tests exhibit overall excellent corrosion resistance of this alloy against the attack of Cl−-containing solutions. The main type of corrosion topography presents an intergranular feature. In addition, electrochemical impedance spectroscopy (EIS) investigation of the HEA samples under immersion test suggests chloride anion–containing environment leads to the decline of passivation film quality. Further analysis of XPS results reveals that significant amounts of elements exist with atomic states in the passive films.

Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5554
Author(s):  
Zhijian Zhang ◽  
Tiechui Yuan ◽  
Ruidi Li

The corrosion behavior of the Fe50Mn30Co10Cr10 high-entropy alloy (HEA) manufactured via laser melting deposition (LMD) was investigated using open circuit potential, potentiodynamic polarization, and electrochemical impedance spectroscopy measurements. The microstructure and morphology of LMD samples before and after the electrochemical tests were compared using X-ray diffraction, optical microscopy, scanning electron microscopy, and electron backscatter diffraction techniques. After the corrosion tests, a striped morphology was observed on the surface of the LMD HEA, which is mainly caused by the interval distribution of high-density and low-density grain-boundary regions. The corrosion performances varied with different planes of the LMD HEA sample, which is mainly controlled by the grain size at each plane. Local corrosion in this HEA is concentrated at the melt pool boundary, which may be due to the abundant metallurgical defects and stress concentration at this location.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 553
Author(s):  
Jinjing Zhang ◽  
Jutao Hu ◽  
Haiyan Xiao ◽  
Huahai Shen ◽  
Lei Xie ◽  
...  

The desorption behaviors of hydrogen from high entropy alloy TiZrVMoNb hydride surface have been investigated using the density functional theory. The (110) surface has been determined to be the most preferable surface for hydrogen desorption from TiZrVMoNb hydride. Due to the high lattice distortion and heterogeneous chemical environment in HEA hydride, hydrogen desorption from the HEA hydride surface is found to be complex. A comparison of molecular and atomic hydrogen desorption reveals that hydrogen prefers to desorb in atomic states from TiZrVMoNb hydride (110) surface rather than molecular states during the hydrogen desorption process. To combine as H2 molecules, the hydrogen atoms need to overcome attractive interaction from TiZrVMoNb hydride (110) surface. These results suggest that the hydrogen desorption on TiZrVMoNb hydride (110) surface is a chemical process. The presented results provide fundamental insights into the underlying mechanism for hydrogen desorption from HEA hydride surface and may open up more possibilities for designing HEAs with excellent hydrogen desorption ability.


2018 ◽  
Vol 54 (5) ◽  
pp. 4433-4443 ◽  
Author(s):  
Rajesh K. Mishra ◽  
P. P. Sahay ◽  
Rohit R. Shahi

2019 ◽  
Vol 157 ◽  
pp. 109887 ◽  
Author(s):  
Shengyu Chen ◽  
Zhaobing Cai ◽  
Zhaoxia Lu ◽  
Jibin Pu ◽  
Ran Chen ◽  
...  

Entropy ◽  
2018 ◽  
Vol 20 (12) ◽  
pp. 908 ◽  
Author(s):  
Wenrui Wang ◽  
Jieqian Wang ◽  
Honggang Yi ◽  
Wu Qi ◽  
Qing Peng

The present work investigates the influence of micro-alloyed Mo on the corrosion behavior of (CoCrFeNi)100−xMox high-entropy alloys. All of the (CoCrFeNi)100−xMox alloys exhibit a single face-centered cubic (FCC) solid solution. However, the (CoCrFeNi)97Mo3 alloy exhibits an ordered sigma (σ) phase enriched in Cr and Mo. With the increase of x (the Mo content) from 1 to 3, the hardness of the (CoCrFeNi)100−xMox alloys increases from 124.8 to 133.6 Vickers hardness (HV), and the compressive yield strength increases from 113.6 MPa to 141.1 MPa, without fracture under about a 60% compressive strain. The potentiodynamic polarization curve in a 3.5% NaCl solution indicates that the addition of Mo has a beneficial effect on the corrosion resistance to some certain extent, opposed to the σ phase. Furthermore, the alloys tend to form a passivation film in the 0.5 M H2SO4 solution in order to inhibit the progress of the corrosion reaction as the Mo content increases.


Sign in / Sign up

Export Citation Format

Share Document