scholarly journals Polyacrylamide-Sodium Alginate Hydrogel Releasing Oxygen and Vitamin C Promotes Bone Regeneration in Rat Skull Defects

2021 ◽  
Vol 8 ◽  
Author(s):  
Bin Zhao ◽  
Jingya He ◽  
Feng Wang ◽  
Ruxiao Xing ◽  
Bin Sun ◽  
...  

Oxygen is essential for cell survival and tissue regeneration. Scaffolds releasing oxygen have been hypothesized as an ideal strategy for bone repair. However, excessive oxygen supply will disturb the redox balance, lead to oxidative stress, and affect bone regeneration. In this study, we synthesized a hydrogel from sodium alginate and loaded it calcium peroxide nanoparticles as an oxygen generating material and vitamin C as a pH regulator and antioxidant. The composite hydrogel, with a pH value close to physiological humoral fluid, could release oxygen to alleviate hypoxia in the bone defect and reduce the side effects of excessive hydrogen peroxide. In in vitro experiments, the composite hydrogel promoted the osteogenic differentiation and ALP and mineralization ability of rat bone marrow mesenchymal stem cells in a hypoxic environment (2% O2). In animal experiments, the composite hydrogel was applied in rat skull defect models. It promoted the healing of bone defects. These results suggest that sodium alginate hydrogel releasing oxygen and vitamin C is suitable for cell survival and tissue regeneration in a hypoxic environment and has good application prospects in bone defect repair.

2021 ◽  
Vol 12 ◽  
pp. 204173142110042
Author(s):  
Rao Fu ◽  
Chuanqi Liu ◽  
Yuxin Yan ◽  
Qingfeng Li ◽  
Ru-Lin Huang

Traditional bone tissue engineering (BTE) strategies induce direct bone-like matrix formation by mimicking the embryological process of intramembranous ossification. However, the clinical translation of these clinical strategies for bone repair is hampered by limited vascularization and poor bone regeneration after implantation in vivo. An alternative strategy for overcoming these drawbacks is engineering cartilaginous constructs by recapitulating the embryonic processes of endochondral ossification (ECO); these constructs have shown a unique ability to survive under hypoxic conditions as well as induce neovascularization and ossification. Such developmentally engineered constructs can act as transient biomimetic templates to facilitate bone regeneration in critical-sized defects. This review introduces the concept and mechanism of developmental BTE, explores the routes of endochondral bone graft engineering, highlights the current state of the art in large bone defect reconstruction via ECO-based strategies, and offers perspectives on the challenges and future directions of translating current knowledge from the bench to the bedside.


2021 ◽  
Author(s):  
Xiao Zhang ◽  
Zhiyue Li ◽  
Taoyi Zhang ◽  
Jing Chen ◽  
Wenxi Ji ◽  
...  

A novel zeolitic imidazolate framework-8 (ZIF-8) alginate composite hydrogel material (PVA/SA@ZIF-8) is alginate composite bead which was fabricated by grafting ZIF-8 on the surface of the sodium alginate hydrogel beads...


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Tian Ding ◽  
Wenyan Kang ◽  
Jianhua Li ◽  
Lu Yu ◽  
Shaohua Ge

Abstract Background The regeneration of periodontal bone defect remains a vital clinical challenge. To date, numerous biomaterials have been applied in this field. However, the immune response and vascularity in defect areas may be key factors that are overlooked when assessing the bone regeneration outcomes of biomaterials. Among various regenerative therapies, the up-to-date strategy of in situ tissue engineering stands out, which combined scaffold with specific growth factors that could mimic endogenous regenerative processes. Results Herein, we fabricated a core/shell fibrous scaffold releasing basic fibroblast growth factor (bFGF) and bone morphogenetic protein-2 (BMP-2) in a sequential manner and investigated its immunomodulatory and angiogenic properties during periodontal bone defect restoration. The in situ tissue engineering scaffold (iTE-scaffold) effectively promoted the angiogenesis of periodontal ligament stem cells (PDLSCs) and induced macrophage polarization into pro-healing M2 phenotype to modulate inflammation. The immunomodulatory effect of macrophages could further promote osteogenic differentiation of PDLSCs in vitro. After being implanted into the periodontal bone defect model, the iTE-scaffold presented an anti-inflammatory response, provided adequate blood supply, and eventually facilitated satisfactory periodontal bone regeneration. Conclusions Our results suggested that the iTE-scaffold exerted admirable effects on periodontal bone repair by modulating osteoimmune environment and angiogenic activity. This multifunctional scaffold holds considerable promise for periodontal regenerative medicine and offers guidance on designing functional biomaterials. Graphic Abstract


RSC Advances ◽  
2019 ◽  
Vol 9 (48) ◽  
pp. 27961-27972
Author(s):  
Dan Zheng ◽  
Bo Bai ◽  
Xiaohui Xu ◽  
Yunhua He ◽  
Shan Li ◽  
...  

Composite hydrogel beads prepared by sodium alginate with hydrophilicity and detonation nanodiamond with photothermal conversion property exhibited apparent water release behavior under illumination.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Xiaoyang Wang ◽  
Shuqing Tong ◽  
Shengyun Huang ◽  
Li Ma ◽  
Zhenxing Liu ◽  
...  

Purpose. This study is aimed at investigating bone regeneration in critical-sized defects in rabbit calvarium using a novel nano- (n-) hydroxyapatite hybrid scaffold with concentrated growth factors (CGFs). Methods. Twenty-four male adult rabbits were chosen to establish a critical-sized bone defect model and randomly divided into two groups. Two defects of 15 mm diameter each were created in the parietal bone of each animal. Group A had n-hydroxyapatite hybrid scaffold placed in the experimental defect on the right, and the left defect was unfilled as blank. Group B had hydroxyapatite hybrid scaffold mixed with CGF placed in the right defect and CGF on the left. Six animals in each group were sacrificed after 6 and 12 weeks. Cone-beam computed tomography system scanning and hematoxylin and eosin (HE) staining were used to detect osteogenesis within the defects. Results. The treatment with n-hydroxyapatite hybrid scaffold along with CGF resulted in a significantly higher amount of new bone at 6 and 12 weeks compared to the treatment with CGF alone and the controls. No apparent inflammation and foreign body reaction were observed through HE staining. Conclusions. The new synthesized n-hydroxyapatite hybrid scaffold and CGF can be applied for bone defect regeneration to promote the process to a certain extent.


2016 ◽  
Vol 4 (5) ◽  
pp. 973-981 ◽  
Author(s):  
Jieyuan Zhang ◽  
Yunlong Yang ◽  
Yunfeng Chen ◽  
Xiaolin Liu ◽  
Shangchun Guo ◽  
...  

A novel in situ formed composite hydrogel based on the phototriggered imine crosslink mechanism with good biocompatibility and osteoinduction is developed for bone repair.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Bowen Tan ◽  
Quan Tang ◽  
Yongjin Zhong ◽  
Yali Wei ◽  
Linfeng He ◽  
...  

AbstractIssues caused by maxillofacial tumours involve not only dealing with tumours but also repairing jaw bone defects. In traditional tumour therapy, the systemic toxicity of chemotherapeutic drugs, invasive surgical resection, intractable tumour recurrence, and metastasis are major threats to the patients’ lives in the clinic. Fortunately, biomaterial-based intervention can improve the efficiency of tumour treatment and decrease the possibility of recurrence and metastasis, suggesting new promising antitumour therapies. In addition, maxillofacial bone tissue defects caused by tumours and their treatment can negatively affect the physiological and psychological health of patients, and investment in treatment can result in a multitude of burdens to society. Biomaterials are promising options because they have good biocompatibility and bioactive properties for stimulation of bone regeneration. More interestingly, an integrated material regimen that combines tumour therapy with bone repair is a promising treatment option. Herein, we summarized traditional and biomaterial-mediated maxillofacial tumour treatments and analysed biomaterials for bone defect repair. Furthermore, we proposed a promising and superior design of dual-functional biomaterials for simultaneous tumour therapy and bone regeneration to provide a new strategy for managing maxillofacial tumours and improve the quality of life of patients in the future.


2020 ◽  
Vol 48 (3) ◽  
pp. 755-764
Author(s):  
Benjamin B. Rothrauff ◽  
Rocky S. Tuan

Bone possesses an intrinsic regenerative capacity, which can be compromised by aging, disease, trauma, and iatrogenesis (e.g. tumor resection, pharmacological). At present, autografts and allografts are the principal biological treatments available to replace large bone segments, but both entail several limitations that reduce wider use and consistent success. The use of decellularized extracellular matrices (ECM), often derived from xenogeneic sources, has been shown to favorably influence the immune response to injury and promote site-appropriate tissue regeneration. Decellularized bone ECM (dbECM), utilized in several forms — whole organ, particles, hydrogels — has shown promise in both in vitro and in vivo animal studies to promote osteogenic differentiation of stem/progenitor cells and enhance bone regeneration. However, dbECM has yet to be investigated in clinical studies, which are needed to determine the relative efficacy of this emerging biomaterial as compared with established treatments. This mini-review highlights the recent exploration of dbECM as a biomaterial for skeletal tissue engineering and considers modifications on its future use to more consistently promote bone regeneration.


2021 ◽  
Vol 10 (9) ◽  
pp. 1842
Author(s):  
Valentin Herber ◽  
Begüm Okutan ◽  
Georgios Antonoglou ◽  
Nicole G. Sommer ◽  
Michael Payer

Bone preservation and primary regeneration is a daily challenge in the field of dental medicine. In recent years, bioresorbable metals based on magnesium (Mg) have been widely investigated due to their bone-like modulus of elasticity, their high biocompatibility, antimicrobial, and osteoconductive properties. Synthetic Mg-based biomaterials are promising candidates for bone regeneration in comparison with other currently available pure synthetic materials. Different alloys based on Mg were developed to fit clinical requirements. In parallel, advances in additive manufacturing offer the possibility to fabricate experimentally bioresorbable metallic porous scaffolds. This review describes the promising clinical results of resorbable Mg-based biomaterials for bone repair in osteosynthetic application and discusses the perspectives of use in oral bone regeneration.


Sign in / Sign up

Export Citation Format

Share Document