scholarly journals An Experimental and Analytical Study on the Bending Performance of CFRP-Reinforced Glulam Beams

2022 ◽  
Vol 8 ◽  
Author(s):  
Minjuan He ◽  
Yuxuan Wang ◽  
Zheng Li ◽  
Lina Zhou ◽  
Yichang Tong ◽  
...  

The fiber-reinforced polymer is one kind of composite material made of synthetic fiber and resin, which has attracted research interests for the reinforcement of timber elements. In this study, 18 glued-laminated (glulam) beams, unreinforced or reinforced with internally embedded carbon fiber–reinforced polymer (CFRP) sheets, were tested under four-point bending loads. For the reinforced glulam beams, the influences of the strengthening ratio, the modulus of elasticity of the CFRP, and the CFRP arrangement on their bending performance were experimentally investigated. Subsequently, a finite element model developed was verified with the experimental results; furthermore, a general theoretical model considering the typical tensile failure mode was employed to predict the bending–resisting capacities of the reinforced glulam beams. It is found that the reinforced glulam beams are featured with relatively ductile bending failure, compared to the brittle tensile failure of the unreinforced ones. Besides, the compressive properties of the uppermost grain of the glulam can be fully utilized in the CFRP-reinforced beams. For the beams with a 0.040% strengthening ratio, the bending–resisting capacity and the maximum deflection can be enhanced approximately by 6.51 and 12.02%, respectively. The difference between the experimental results and the numerical results and that between the experimental results and analytical results are within 20 and 10%, respectively.

2018 ◽  
Vol 39 (3) ◽  
pp. 470-484
Author(s):  
Shengshan Pan ◽  
Muzhou Zhao ◽  
Bassem Andrawes ◽  
Hang Zhao ◽  
Lian Li

This paper presents a new composite buffer for mitigating the lateral displacement of structures under seismic loading. The buffer consists of a cylindrical rubber wrapped with fiber reinforced polymer composite. The uniaxial compressive stiffness of the buffer can be controlled by varying either the number of fiber reinforced polymer layers or the wrapping scheme of fiber reinforced polymer. First, a test program is carried out to investigate the impact of various parameters on the compressive stiffness and strength of the new buffer including thickness of fiber reinforced polymer, wrapping scheme, and method of wrapping of fiber reinforced polymer. Next, a theoretical formulation is derived to describe the constitutive behavior of fiber reinforced polymer wrapped rubber under uniaxial compression using strain energy density function of the Yeoh N-order polynomial model. Finally, a finite element model is developed to analyze the new composite buffer and the numerical results are validated using the experimental results. The results of the study show that the Yeoh model is able to simulate the behavior of rubber under compression. The new composite buffer exhibits significantly higher stiffness and strength than that of pure rubber. Wrapping scheme plays an important role in defining the mechanical behavior of the buffer. The study also shows good agreement between the numerical simulation and the experimental results.


2020 ◽  
Vol 1012 ◽  
pp. 14-19
Author(s):  
Michelle Souza Oliveira ◽  
Fabio da Costa Garcia Filho ◽  
Fernanda Santos da Luz ◽  
Artur Camposo Pereira ◽  
Luana Cristyne da Cruz Demosthenes ◽  
...  

Composite materials are being extensively studied for ballistic armor. Their main advantage is connected to the possibility of deeply reducing weight and costs by maintaining high performances in terms of strength and security. Epoxy composites are reinforced with natural fibers which are replacing other synthetic reinforcement materials. Composites are prepared using polymers as matrix material because of ease of production with different reinforcements. The mechanical strength of the natural fiber reinforced polymer composites has been compared with synthetic fiber reinforced polymer composites and it is found that for achieving equivalent mechanical strength of the material, the volume fraction of the natural fiber should be much higher than synthetic fiber. This work being an experimental study on untreated “as received” fique fabric-reinforced epoxy composites, to demonstrate the potential of this renewable source of natural fiber for use in a number of applications.


2019 ◽  
Vol 8 (2) ◽  
pp. 5791-5798

Strengthening of structural members is a mechanism of promoting structures to upgrade its attainment under existing loads or to boost the fortitude of structural members to carry further loads. Any frailty at the time of designing or any other construction errors may lead to the cause of structural deterioration causing failures of the structural members. This paper presents an experimental study on the behavior of corroded Circular Hollow Steel Tubular (CHST) members strengthened with Aramid Fiber Reinforced Polymer (AFRP) composites. In this field, the experimental investigation is narrowed up to the usage of Glass Fiber Reinforced Polymer (GFRP) and Carbon Fiber Reinforced polymer (CFRP) and also in the application procedure i.e., the wrapping scheme. Prime advantages of AFRP over steel members are low weight, highly durable, corrosion resistance and easy applicability. The workability and the consonance of AFRP were studied in this paper to evaluate the confinement of AFRP in the strengthening effect of CHST members. The main deprivation of AFRP is the cost alone. So, in this experimental process, instead of going full wrapping, a special technique of spiral wrapping was adopted to get the closed confinement of AFRP. Totally twelve specimens were casted and tested to execute the experimental work including both control and wrapped specimens by controlling different parameters up to the failure mode. The experimental results uttered the increment in the load carrying capacity of the wrapped specimens. The involvement of AFRP in the better confinement was observed in the experimental results with the increase in the number of layers of AFRP strips. From the series of experiments, the results which were collected were compared with the control sample to determine the variation and then the axial stress-strain curve and load deflection curve were studied. It was also observed that, the local buckling was getting delayed with the increase in the number of layers of AFRP strips.


2021 ◽  
Vol 891 ◽  
pp. 125-130
Author(s):  
Subrata Chandra Das ◽  
Debasree Paul ◽  
Mubarak Ahmad Khan ◽  
Sotirios A. Grammatikos ◽  
Styliani Papatzani

Recently, natural fiber reinforced polymer composites have become popular over traditional synthetic fiber reinforced polymer composites for automotive, low demanding structural and semi-structural applications. In this work, a comparative study of a natural fiber composite such as jute fabric composite (JFRP) and synthetic fiber composite such as glass fiber composite (GFRP) is presented. The composites were manufactured using hand lay-up and then curing at 90°C for 10 min in a hot press, followed by 24 h room temperature post-curing. The mechanical properties such as tensile and bending of JFRP and GFRP composites, were evaluated and compared. It was revealed that even if GFRPs exhibited significantly higher mechanical properties than JFRPs, environmental impact would still favor JFRPs for non-structural and low load bearing applications.


Sign in / Sign up

Export Citation Format

Share Document