scholarly journals Development and Internal Validation of Supervised Machine Learning Algorithms for Predicting the Risk of Surgical Site Infection Following Minimally Invasive Transforaminal Lumbar Interbody Fusion

2021 ◽  
Vol 8 ◽  
Author(s):  
Haosheng Wang ◽  
Tingting Fan ◽  
Bo Yang ◽  
Qiang Lin ◽  
Wenle Li ◽  
...  

Purpose: Machine Learning (ML) is rapidly growing in capability and is increasingly applied to model outcomes and complications in medicine. Surgical site infections (SSI) are a common post-operative complication in spinal surgery. This study aimed to develop and validate supervised ML algorithms for predicting the risk of SSI following minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF).Methods: This single-central retrospective study included a total of 705 cases between May 2012 and October 2019. Data of patients who underwent MIS-TLIF was extracted by the electronic medical record system. The patient's clinical characteristics, surgery-related parameters, and routine laboratory tests were collected. Stepwise logistic regression analyses were used to screen and identify potential predictors for SSI. Then, these factors were imported into six ML algorithms, including k-Nearest Neighbor (KNN), Decision Tree (DT), Support Vector Machine (SVM), Random Forest (RF), Multi-Layer Perceptron (MLP), and Naïve Bayes (NB), to develop a prediction model for predicting the risk of SSI following MIS-TLIF under Quadrant channel. During the training process, 10-fold cross-validation was used for validation. Indices like the area under the receiver operating characteristic (AUC), sensitivity, specificity, and accuracy (ACC) were reported to test the performance of ML models.Results: Among the 705 patients, SSI occurred in 33 patients (4.68%). The stepwise logistic regression analyses showed that pre-operative glycated hemoglobin A1c (HbA1c), estimated blood loss (EBL), pre-operative albumin, body mass index (BMI), and age were potential predictors of SSI. In predicting SSI, six ML models posted an average AUC of 0.60–0.80 and an ACC of 0.80–0.95, with the NB model standing out, registering an average AUC and an ACC of 0.78 and 0.90. Then, the feature importance of the NB model was reported.Conclusions: ML algorithms are impressive tools in clinical decision-making, which can achieve satisfactory prediction of SSI with the NB model performing the best. The NB model may help access the risk of SSI following MIS-TLIF and facilitate clinical decision-making. However, future external validation is needed.

2021 ◽  
Author(s):  
Haosheng Wang ◽  
Tingting Fan ◽  
Bo Yang ◽  
Qiang Lin ◽  
Wenle Li ◽  
...  

Abstract Background: Machine Learning (ML) is rapidly growing in capability and is increasingly applied to model outcomes and complications in medicine. Surgical site infections (SSI) are a common postoperative complication in spinal surgery. This study aimed to develop and validate supervised ML algorithms for predicting the risk of SSI following minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) under the Quadrant channel.Methods: This single-central retrospective study included a total of 705 cases between May 2012 and October 2019. Data of patients who underwent MIS-TLIF under the Quadrant channel was extracted by the electronic medical record system. The patient’s clinical characteristics, surgery-related parameters, and routine laboratory tests were collected. Univariate and multivariate logistic regression analyses were used to screen and identify independent risk factors for SSI. Then, the independent risk factors were imported into six ML algorithms, including k-Nearest Neighbor (KNN), Decision Tree (DT), Support Vector Machine (SVM), Random Forest (RF), Multi-Layer Perceptron (MLP), and Naïve Bayes (NB), to develop a prediction model for predicting the risk of SSI following MIS-TLIF under Quadrant channel. During the training process, 10-fold cross-validation was used for validation. Indices like the area under the receiver operating characteristic (AUC), sensitivity, specificity, and accuracy (ACC) were reported to test the performance of ML models.Results: Among the 705 patients, SSI occurred in 33 patients (4.68%). The univariate and multivariate logistic regression analyses showed that preoperative glycated hemoglobin A1c (HbA1c), estimated blood loss (EBL), preoperative albumin, body mass index (BMI), and age were all independent predictors of SSI. In predicting SSI, six ML models posted an average AUC of 0.60-0.80 and an ACC of 0.80-0.95, with the NB model standing out, registering an average AUC and an ACC of 0.78 and 0.90. Then, the feature importance of the NB model was reported.Conclusions: ML algorithms are impressive tools in clinical decision-making, which can achieve satisfactory prediction of SSI with the NB model performing the best. The NB model may help access the risk of SSI following MIS-TLIF under the Quadrant channel and facilitate clinical decision-making. However, future external validation is needed.


Med ◽  
2021 ◽  
Author(s):  
Lorenz Adlung ◽  
Yotam Cohen ◽  
Uria Mor ◽  
Eran Elinav

2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Shubham Debnath ◽  
◽  
Douglas P. Barnaby ◽  
Kevin Coppa ◽  
Alexander Makhnevich ◽  
...  

2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S273-S274
Author(s):  
Lorne W Walker ◽  
Andrew J Nowalk ◽  
Shyam Visweswaran

Abstract Background Deciding whether to attempt salvage of an infected central venous catheter (CVC) can be challenging. While line removal is the definitive treatment for central-line associated bloodstream infection (CLABSI), salvage may be attempted with systemic antibiotics and antibiotic lock therapy (ALT). Weighing risk and benefit of CVC salvage is limited by uncertainty in the future viability of salvaged CVCs. If a CVC is likely to require subsequent removal (e.g., due to recurrent infection) salvage may not be beneficial, whereas discarding a viable CVC is also not desirable. Here we describe a machine learning approach to predicting outcomes in CVC salvage. Methods Episodes of pediatric CLABSI cleared with ALT were identified by retrospective record review between January 1, 2008 and December 31, 2018 and were defined by a single positive central blood culture of a known pathogen or two matching cultures of a possible contaminant. Clearance was defined as 48-hours of negative cultures and relapse was defined as a matching positive blood culture after clearance. Predictive models [logistic regression (LR), random forest (RF), support vector machine (SVM) and an ensemble combining the three] were used to predict recurrence-free CVC retention (RFCR) at various time points using a training and test set approach. Results Overall, 712 instances CLABSI cleared with ALT were identified. Demographic and microbiological data are summarized in Tables 1 and 2. Few (8%) instances recurred in the first 28 days. 58% recurred at any time within the study period. Rates of RFCR were 75%, 43%, 22% and 10% at 28, 91, 182 and 365 days. Machine learning (ML) models varied in their ability to predict RFCR (Table 3). RF models performed best overall, although no model performed well at 91 days. Conclusion ML models provide an opportunity to augment clinical decision making by learning patterns from data. In this case, estimating the likelihood of useful line retention in the future could help guide informed decisions on salvage vs. removal of infected CVCs. Limitations include the heterogeneity of clinical data and the use of an outcome capturing both clinical decision making (line removal) and infection recurrence. With further model development and prospective validation, practical machine learning models may prove useful to clinicians. Disclosures All authors: No reported disclosures.


Sign in / Sign up

Export Citation Format

Share Document